TY - JOUR
T1 - Hybridization of Modified-Heme Reconstitution and Distal Histidine Mutation to Functionalize Sperm Whale Myoglobin
AU - Sato, Hideaki
AU - Hayashi, Takashi
AU - Ando, Tsutomu
AU - Hisaeda, Yoshio
AU - Ueno, Takafumi
AU - Watanabe, Yoshihito
PY - 2004/1/21
Y1 - 2004/1/21
N2 - To modulate the physiological function of a hemoprotein, most approaches have been demonstrated by site-directed mutagenesis. Replacement of the native heme with an artificial prosthetic group is another way to modify a hemoprotein. However, an alternate method, mutation or heme reconstitution, does not always demonstrate sufficient improvement compared with the native heme enzyme. In the present study, to convert a simple oxygen storage hemoprotein, myoglobin, into an active peroxidase, we applied both methods at the same time. The native heme of myoglobin was replaced with a chemically modified heme 2 having two aromatic rings at the heme-propionate termini. The constructed myoglobins were examined for 2-methoxyphenol (guaiacol) oxidation in the presence of H2O2. Compared with native myoglobin, rMb(H64D·2) showed a 430-fold higher kcat/Km value, which is significantly higher than that of cytochrome c peroxidase and only 3-fold less than that of horseradish peroxidase. In addition, myoglobin-catalyzed degradation of bisphenol A was examined by HPLC analysis. The rMb(H64D·2) showed drastic acceleration (>35-fold) of bisphenol A degradation compared with the native myoglobin. In this system, a highly oxidized heme reactive species is smoothly generated and a substrate is effectively bound in the heme pocket, while native myoglobin only reversibly binds dioxygen. The present results indicate that the combination of a modified-heme reconstitution and an amino acid mutation should offer interesting perspectives toward developing a useful biomolecule catalyst from a hemoprotein.
AB - To modulate the physiological function of a hemoprotein, most approaches have been demonstrated by site-directed mutagenesis. Replacement of the native heme with an artificial prosthetic group is another way to modify a hemoprotein. However, an alternate method, mutation or heme reconstitution, does not always demonstrate sufficient improvement compared with the native heme enzyme. In the present study, to convert a simple oxygen storage hemoprotein, myoglobin, into an active peroxidase, we applied both methods at the same time. The native heme of myoglobin was replaced with a chemically modified heme 2 having two aromatic rings at the heme-propionate termini. The constructed myoglobins were examined for 2-methoxyphenol (guaiacol) oxidation in the presence of H2O2. Compared with native myoglobin, rMb(H64D·2) showed a 430-fold higher kcat/Km value, which is significantly higher than that of cytochrome c peroxidase and only 3-fold less than that of horseradish peroxidase. In addition, myoglobin-catalyzed degradation of bisphenol A was examined by HPLC analysis. The rMb(H64D·2) showed drastic acceleration (>35-fold) of bisphenol A degradation compared with the native myoglobin. In this system, a highly oxidized heme reactive species is smoothly generated and a substrate is effectively bound in the heme pocket, while native myoglobin only reversibly binds dioxygen. The present results indicate that the combination of a modified-heme reconstitution and an amino acid mutation should offer interesting perspectives toward developing a useful biomolecule catalyst from a hemoprotein.
UR - http://www.scopus.com/inward/record.url?scp=0346456937&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0346456937&partnerID=8YFLogxK
U2 - 10.1021/ja038798k
DO - 10.1021/ja038798k
M3 - Article
C2 - 14719919
AN - SCOPUS:0346456937
SN - 0002-7863
VL - 126
SP - 436
EP - 437
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 2
ER -