Hybrid Anode Design of Polymer Electrolyte Membrane Water Electrolysis Cells for Ultra-High Current Density Operation with Low Platinum Group Metal Loading

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Reducing platinum group metal (PGM) loading and high current density operation are both essential for minimizing the capital expenditure (CAPEX) of polymer electrolyte membrane (PEM) electrolyzers. Catalyst-integrated porous transport electrodes (PTEs) in which iridium acts as both a catalyst and a conductive coating on porous transport layer (PTL) surfaces, enable the preparation of Pt-coating-free PTLs, but can also result in relatively high activation and ohmic overvoltages. Here, a novel hybrid anode design combining an intermediate catalyst layer and a catalyst-integrated PTE is developed. This hybrid anode demonstrates that Ir on PTL can contribute to the oxygen evolution reaction (OER) and exhibits comparable electrolysis performance to a conventional anode consisting of Pt-coated PTL with the same Ir loadings despite Pt-coating-free on the PTL of the hybrid anode. This novel anode eliminates the need for a Pt coating whilst also enabling ultra-high current density operations up to 20 A cm−2 with a total PGM loading of only around 0.6 mg cm−2 on the anode side. This paper proposes a next-generation anode structure with new functions of PTLs for ultra-high current density operation with low PGM loading to significantly reduce green hydrogen costs.

Original languageEnglish
Article number124507
JournalJournal of the Electrochemical Society
Volume170
Issue number12
DOIs
Publication statusPublished - 2023

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Renewable Energy, Sustainability and the Environment
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Electrochemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Hybrid Anode Design of Polymer Electrolyte Membrane Water Electrolysis Cells for Ultra-High Current Density Operation with Low Platinum Group Metal Loading'. Together they form a unique fingerprint.

Cite this