High-speed micro-RNA isolation from DNA fragments by nanopiller array chip

Qiong Wu, Takao Yasui, Sakon Rahong, Takeshi Yanagida, Masaki Kanai, Noritada Kaji, Manabu Tokeshi, Kazuki Nagashima, Tomoji Kawai, Yoshinobu Baba

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

A novel nanopillar chip, which combines pillar structures (nanopillars) and dammed structures (nanoslits) at the nanometer scale inside a microchannel, was fabricated and applied to micro-RNA isolation from a mixture of nucleic acids. Electrophoretic behaviors of micro-RNA and DNA fragments in the nanopillar chip were carefully investigated and the isolation condition was optimized for the mixture of 10-kbp, lambda (48.5-kbp) and T4 DNA (165.5-kbp).

Original languageEnglish
Title of host publication17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013
PublisherChemical and Biological Microsystems Society
Pages1206-1208
Number of pages3
ISBN (Print)9781632666246
Publication statusPublished - 2013
Externally publishedYes
Event17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013 - Freiburg, Germany
Duration: Oct 27 2013Oct 31 2013

Publication series

Name17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013
Volume2

Other

Other17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2013
Country/TerritoryGermany
CityFreiburg
Period10/27/1310/31/13

All Science Journal Classification (ASJC) codes

  • Bioengineering

Fingerprint

Dive into the research topics of 'High-speed micro-RNA isolation from DNA fragments by nanopiller array chip'. Together they form a unique fingerprint.

Cite this