Abstract
Sports, especially badminton, require participants to perform dynamic and skillful motions. Previous robots have had difficulty in performing like a human because of their severe limitations of low operating speed, heavy bodies, and simplistic mechanisms. In this letter, we propose a new robot design that consists of a structure integrated with pneumatic actuators and noninterfering many-degree-of-freedom joints, for the realization of a high-speed and lightweight humanoid robot. We made a four-degree-of-freedom robot arm for badminton, which is an especially dynamic sport, aiming for maximum speed while meeting geometric requirements. The robot swung with a racket-head speed of 21 m/s, which is a value higher than speeds achieved by previous robotic arms. The robot also realized a skillful shot, namely the spin net shot, which cannot be performed by previous badminton robots having simple mechanisms. A pneumatic robot is considered difficult to control, especially in terms of feedback control. We found that the reproducibility of the robot was as fine as 10-40 mm at the racket head for four kinds of strong swings. Using feedforward control, we also conducted an experiment in which the robot hits a flying shuttle, and achieved a high hitting rate of 69.7% for powerful swings. We believe that this research expands the possibilities of the pneumatic robot and is the first step toward developing a skillful humanoid badminton robot.
Original language | English |
---|---|
Pages (from-to) | 1727-1734 |
Number of pages | 8 |
Journal | IEEE Robotics and Automation Letters |
Volume | 3 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jul 2018 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Biomedical Engineering
- Human-Computer Interaction
- Mechanical Engineering
- Computer Vision and Pattern Recognition
- Computer Science Applications
- Control and Optimization
- Artificial Intelligence