High-performance polymer dispersed liquid crystal enabled by uniquely designed acrylate monomer

Rijeesh Kizhakidathazhath, Hiroya Nishikawa, Yasushi Okumura, Hiroki Higuchi, Hirotsugu Kikuchi

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


The widespread electro-optical applications of polymer dispersed liquid crystals (PDLCs) are hampered by their high-driving voltage. Attempts to fabricate PDLC devices with low driving voltage sacrifice other desirable features of PDLCs. There is thus a clear need to develop a method to reduce the driving voltage without diminishing other revolutionary features of PDLCs. Herein, we report a low-voltage driven PDLC system achieved through an elegantly simple and uniquely designed acrylate monomer (A3DA) featuring a benzene moiety with a dodecyl terminal chain. The PDLC films were fabricated by the photopolymerization of mono-and di-functional acrylate monomers (19.2 wt%) mixed in a nematic liquid crystal E7 (80 wt%). The PDLC film with A3DA exhibited an abrupt decline of driving voltage by 75% (0.55 V/μm) with a high contrast ratio (16.82) while maintaining other electro-optical properties almost the same as the reference cell. The response time was adjusted to satisfactory by tuning the monomer concentration while maintaining the voltage significantly low (3 ms for a voltage of 0.98 V/μm). Confocal laser scanning microscopy confirmed the polyhedral foam texture morphology with an average mesh size of approximately 2.6 μm, which is less in comparison with the mesh size of reference PDLC (3.4 μm), yet the A3DA-PDLC showed low switching voltage. Thus, the promoted electro-optical properties are believed to be originated from the unique polymer networks formed by A3DA and its weak anchoring behavior on LCs. The present system with such a huge reduction in driving voltage and enhanced electro-optical performance opens up an excellent way for abundant perspective applications of PDLCs.

Original languageEnglish
Article number1625
Issue number8
Publication statusPublished - 2020

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Polymers and Plastics


Dive into the research topics of 'High-performance polymer dispersed liquid crystal enabled by uniquely designed acrylate monomer'. Together they form a unique fingerprint.

Cite this