High-gravity-assisted pulsed laser ablation system for the fabrication of functionally graded material thin film

T. Nishiyama, S. Morinaga, K. Nagayama

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

This paper describes a novel method for the fabrication of a thin film deposited on an appropriate substrate having a continuous composition gradient. The composition gradient was achieved by a combination of pulsed laser ablation (PLA) of the target material with a very strong acceleration field generated on a moving disk rotating at a very high speed. The PLA process was used to produce a cloud of high-energy particles of the target material that will be deposited on a substrate placed on the rotating disk. After deposition, the particles will diffuse on the surface of the thin film under a strong acceleration field. The high energy of the particles and their diffusion on the substrate surface in a high-vacuum environment produces a macroscopic composition distribution in the thin film. We have constructed an experimental apparatus consisting of a vacuum chamber in which a circular disk made of titanium is driven by a high-frequency inductive motor. An acceleration field of up to 10 000 G can be generated by this apparatus. Functionally graded material thin films of FeSi2 with a continuous concentration gradient were successfully fabricated by this method under a gravity field of 5400 G. A significant advantage of this method is that it allows us to fabricate graded thin films with a very smooth surface covered by few droplets.

Original languageEnglish
Article number033904
JournalReview of Scientific Instruments
Volume80
Issue number3
DOIs
Publication statusPublished - 2009

All Science Journal Classification (ASJC) codes

  • Instrumentation

Fingerprint

Dive into the research topics of 'High-gravity-assisted pulsed laser ablation system for the fabrication of functionally graded material thin film'. Together they form a unique fingerprint.

Cite this