Hierarchical Gaussian Descriptor for Person Re-identification

Tetsu Matsukawa, Takahiro Okabe, Einoshin Suzuki, Yoichi Sato

Research output: Chapter in Book/Report/Conference proceedingConference contribution

525 Citations (Scopus)


Describing the color and textural information of a person image is one of the most crucial aspects of person re-identification. In this paper, we present a novel descriptor based on a hierarchical distribution of pixel features. A hierarchical covariance descriptor has been successfully applied for image classification. However, the mean information of pixel features, which is absent in covariance, tends to be major discriminative information of person images. To solve this problem, we describe a local region in an image via hierarchical Gaussian distribution in which both means and covariances are included in their parameters. More specifically, we model the region as a set of multiple Gaussian distributions in which each Gaussian represents the appearance of a local patch. The characteristics of the set of Gaussians are again described by another Gaussian distribution. In both steps, unlike the hierarchical covariance descriptor, the proposed descriptor can model both the mean and the covariance information of pixel features properly. The results of experiments conducted on five databases indicate that the proposed descriptor exhibits re-markably high performance which outperforms the state-of-the-art descriptors for person re-identification.

Original languageEnglish
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
PublisherIEEE Computer Society
Number of pages10
ISBN (Electronic)9781467388504
Publication statusPublished - Dec 9 2016
Event29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 - Las Vegas, United States
Duration: Jun 26 2016Jul 1 2016

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919


Conference29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Country/TerritoryUnited States
CityLas Vegas

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Hierarchical Gaussian Descriptor for Person Re-identification'. Together they form a unique fingerprint.

Cite this