Heteroepitaxial vertical perovskite hot-electron transistors down to the monolayer limit

Brian S.Y. Kim, Yasuyuki Hikita, Takeaki Yajima, Harold Y. Hwang

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Two-dimensional heterostructures combined with vertical geometries are candidates to probe and utilize the physical properties of atomically-thin materials. The vertical configuration enables a unique form of hot-carrier spectroscopy as well as atomic-scale devices. Here, we present the room-temperature evolution of heteroepitaxial perovskite hot-electron transistors using a SrRuO3 base down to the monolayer limit (∼4 Å). As a fundamental electronic probe, we observe an abrupt transition in the hot-electron mean free path as a function of base thickness, coinciding with the thickness-dependent resistive transition. As a path towards devices, we demonstrate the integrated synthesis of perovskite one-dimensional electrical edge contacts using water-soluble and growth-compatible Sr3Al2O6 hard masks. Edge-contacted monolayer-base transistors exhibit on/off ratios reaching ∼108, complete electrostatic screening by the base manifesting pure hot-electron injection, and excellent scaling of the output current density with device dimensions. These results open new avenues for incorporating emergent phenomena at oxide interfaces and in heterostructures.

Original languageEnglish
Article number5312
JournalNature communications
Issue number1
Publication statusPublished - Dec 1 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Heteroepitaxial vertical perovskite hot-electron transistors down to the monolayer limit'. Together they form a unique fingerprint.

Cite this