Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field

Masao Hirokawa, Osamu Ogurisu

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


It is investigated that the structure of the kernel of the Dirac-Weyl operator D of a charged particle in the magnetic-field B = B0 + B1, given by the sum of a strongly singular magnetic field B0 (·) = Σvγv δ(· - av with some singular points av and a magnetic-field B1 with a bounded support. Here the magnetic field B1 may have some singular points with the order of the singularity less than 2. At a glance, it seems that, following "Aharonov-Casher Theorem" [Phys. Rev. A 19, 2461 (1979)], the dimension of the kernel of D, dimker D, is a function of one variable of the total magnetic flux ( = Σvγv + ∫R2B1dxdy) of B. However, since the influence of the strongly singular points works, dim ker D indeed is a function of several variables of the total magnetic flux and each of yv's.

Original languageEnglish
Pages (from-to)3334-3343
Number of pages10
JournalJournal of Mathematical Physics
Issue number8
Publication statusPublished - Aug 2001
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Mathematical Physics


Dive into the research topics of 'Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field'. Together they form a unique fingerprint.

Cite this