TY - JOUR
T1 - Glutathione and methylation of inorganic arsenic in hamsters
AU - Hirata, Miyuki
AU - Hisanaga, Akira
AU - Tanaka, Akiyo
AU - Ishinishi, Noburu
PY - 1988
Y1 - 1988
N2 - The effect of giutathione (GSH) concentrations in livers and kidneys of hamsters on the toxicity and methylation of arsenite in these animals was studied. No significant changes in hepatic and renal GSH concentrations were observed after a single arsenite administration (5 mg As kg−1, p.o.). When buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, was given (4 mmol kg−1, i.p.) two hours before administration of arsenite, hepatic and renal GSH concentrations were more severely and persistently depressed than in the case of BSO administration not followed by arsenite. Hamsters treated with BSO plus arsenite suffered from severe nephrotoxicity (acute renal failure) characterized by increases in plasma creatinine and urea nitrogen and by proximal tubular necrosis. Concurrently, transient hepatotoxicity was observed in the BSO plus arsenite group. Neither arsenite alone nor BSO alone produced liver or kidney injury. The BSO plus arsenite‐treated animals excreted in the urine only 3.5% of the arsenic dose during the 72 h period after administration of arsenite, probably because of a decrease in urine volume caused by kidney injury, whereas the arsenite‐only group excreted 27%. In addition, BSO pretreatment influenced the relative proportion of arsenic metabolites excreted in the urine during the first 24 h after administration. Urinary metabolites in the BSO plus arsenite group were predominantly inorganic arsenic. These results suggest that GSH provides protection against arsenic toxicity.
AB - The effect of giutathione (GSH) concentrations in livers and kidneys of hamsters on the toxicity and methylation of arsenite in these animals was studied. No significant changes in hepatic and renal GSH concentrations were observed after a single arsenite administration (5 mg As kg−1, p.o.). When buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, was given (4 mmol kg−1, i.p.) two hours before administration of arsenite, hepatic and renal GSH concentrations were more severely and persistently depressed than in the case of BSO administration not followed by arsenite. Hamsters treated with BSO plus arsenite suffered from severe nephrotoxicity (acute renal failure) characterized by increases in plasma creatinine and urea nitrogen and by proximal tubular necrosis. Concurrently, transient hepatotoxicity was observed in the BSO plus arsenite group. Neither arsenite alone nor BSO alone produced liver or kidney injury. The BSO plus arsenite‐treated animals excreted in the urine only 3.5% of the arsenic dose during the 72 h period after administration of arsenite, probably because of a decrease in urine volume caused by kidney injury, whereas the arsenite‐only group excreted 27%. In addition, BSO pretreatment influenced the relative proportion of arsenic metabolites excreted in the urine during the first 24 h after administration. Urinary metabolites in the BSO plus arsenite group were predominantly inorganic arsenic. These results suggest that GSH provides protection against arsenic toxicity.
UR - http://www.scopus.com/inward/record.url?scp=84990495118&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84990495118&partnerID=8YFLogxK
U2 - 10.1002/aoc.590020407
DO - 10.1002/aoc.590020407
M3 - Article
AN - SCOPUS:84990495118
SN - 0268-2605
VL - 2
SP - 315
EP - 321
JO - Applied Organometallic Chemistry
JF - Applied Organometallic Chemistry
IS - 4
ER -