Abstract
Global localization is a fundamental requirement for a mobile robot. Map-based global localization is a popular technique and gives a precise position by comparing a provided geometric map and current sensory data. However, it is quite time-consuming if 3D range data is processed for 6D global localization. On the other hand, appearance-based global localization using a captured image and recorded images is simple and suitable for real-time processing. However, this technique does not work in the dark or in an environment in which the lighting conditions change remarkably. To cope with these problems, we have proposed a two-step strategy which combines map-based global localization and appearance-based global localization. Firstly, several candidate positions are selected according to an appearance-based technique, and then the optimum position is determined by a map-based technique. Instead of camera images, we use reflectance images, which are captured by a laser range finder as a by-product of range sensing. In this paper, a new technique based on this global localization technique is proposed by combining the two step algorithm and a sampling-based approach. To cope with the odometry data, a particle filter is adopted for tracking robot positions. The effectiveness of the proposed technique is demonstrated through experiments in real environments.
Original language | English |
---|---|
Pages (from-to) | 9-16 |
Number of pages | 8 |
Journal | Research Reports on Information Science and Electrical Engineering of Kyushu University |
Volume | 17 |
Issue number | 1 |
Publication status | Published - May 2012 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electrical and Electronic Engineering
- Computer Science(all)