Germ cell-intrinsic effects of sex chromosomes on early oocyte differentiation in mice

Norio Hamada, Nobuhiko Hamazaki, So Shimamoto, Orie Hikabe, Go Nagamatsu, Yuki Takada, Kiyoko Kato, Katsuhiko Hayashi

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

A set of sex chromosomes is required for gametogenesis in both males and females, as represented by sex chromosome disorders causing agametic phenotypes. Although studies using model animals have investigated the functional requirement of sex chromosomes, involvement of these chromosomes in gametogenesis remains elusive. Here, we elicit a germ cell-intrinsic effect of sex chromosomes on oogenesis, using a novel culture system in which oocytes were induced from embryonic stem cells (ESCs) harboring XX, XO or XY. In the culture system, oogenesis using XO and XY ESCs was severely disturbed, with XY ESCs being more strongly affected. The culture system revealed multiple defects in the oogenesis of XO and XY ESCs, such as delayed meiotic entry and progression, and mispairing of the homologous chromosomes. Interestingly, Eif2s3y, a Y-linked gene that promotes proliferation of spermatogonia, had an inhibitory effect on oogenesis. This led us to the concept that male and female gametogenesis appear to be in mutual conflict at an early stage. This study provides a deeper understanding of oogenesis under a sex-reversal condition.

Original languageEnglish
Article numbere1008676
JournalPLoS genetics
Volume16
Issue number3
DOIs
Publication statusPublished - Mar 2020

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Molecular Biology
  • Genetics
  • Genetics(clinical)
  • Cancer Research

Fingerprint

Dive into the research topics of 'Germ cell-intrinsic effects of sex chromosomes on early oocyte differentiation in mice'. Together they form a unique fingerprint.

Cite this