TY - JOUR
T1 - Geotechnical extreme-event reconnaissance (GEER) investigation to the 2016 Mw 6.0, Mw 6.2 and Mw 7.0 Kumamoto Japan Earthquakes
AU - Kayen, R.
AU - Kokusho, T.
AU - Hazarika, H.
AU - Dashti, S.
AU - Calderon, J. R.
AU - Franke, T. K.
AU - Oettle, N. K.
AU - Wham, B.
AU - Louis-Kayen, G. P.
AU - Sitar, R.
AU - Louis-Kayen, N. M.
N1 - Funding Information:
The Kumamoto, Kyushu, Japan earthquakes began with an earthquake (M6.2) on the Hinagu Fault on April 14, 2016 followed by a second (M7.0) event on the Futagawa Fault, that on April 16. These shallow 10-11 deep km events are the strongest earthquakes recorded in Kyushu prefecture during the modern instrumental era. The United States’ National Science Foundation (US NSF) supported Geotechnical Extreme Events Reconnaissance (GEER) Association conducted a reconnaissance of the region. These earthquakes resulted in substantial damage to infrastructure, buildings, cultural heritage of Kumamoto castle, roads and highways, slopes, and river embankments. Surface fault rupture produced offset to roads, buildings, river levees, and an agricultural dam. Surprisingly, given the extremely intense earthquake motions, liquefaction-induced damage was mostly limited to a few districts of Kumamoto City and in port areas, indicating that either the volcanic soils were largely unsusceptible to liquefaction or the presence of fines reduced the surficial manifestation of liquefaction and its effects. The important case histories identified by the study are [1] fault rupture through Oh-Kirihata Dam; [2] subsidence in Aso Caldera; [3] fault rupture through Shimojin-Cho River Canal; [4] surprising paucity of liquefaction and its effects; and [5] possible identification of a nearly non-displacement lateral spread.
Funding Information:
The work of the GEER Association, in general, is based upon work supported in part by the National Science Foundation through the Geotechnical Engineering Program under Grant No. CMMI-1266418. The GEER Association is made possible by the vision and support of the NSF Geotechnical Engineering Program Directors: Dr. Richard Fragaszy and the late Dr. Cliff Astill. GEER members also donate their time, talent, and resources to collect time-sensitive field observations of the effects of extreme events.
Publisher Copyright:
Copyright © 2018 International Association of Lowland Technology.
PY - 2018/3
Y1 - 2018/3
N2 - The Kumamoto, Kyushu, Japan earthquakes began with an earthquake (M6.2) on the Hinagu Fault on April 14, 2016 followed by a second (M7.0) event on the Futagawa Fault, that on April 16. These shallow 10-11 deep km events are the strongest earthquakes recorded in Kyushu prefecture during the modern instrumental era. The United States' National Science Foundation (US NSF) supported Geotechnical Extreme Events Reconnaissance (GEER) Association conducted a reconnaissance of the region. These earthquakes resulted in substantial damage to infrastructure, buildings, cultural heritage of Kumamoto castle, roads and highways, slopes, and river embankments. Surface fault rupture produced offset to roads, buildings, river levees, and an agricultural dam. Surprisingly, given the extremely intense earthquake motions, liquefaction-induced damage was mostly limited to a few districts of Kumamoto City and in port areas, indicating that either the volcanic soils were largely unsusceptible to liquefaction or the presence of fines reduced the surficial manifestation of liquefaction and its effects. The important case histories identified by the study are [1] fault rupture through Oh-Kirihata Dam; [2] subsidence in Aso Caldera; [3] fault rupture through Shimojin-Cho River Canal; [4] surprising paucity of liquefaction and its effects; and [5] possible identification of a nearly non-displacement lateral spread.
AB - The Kumamoto, Kyushu, Japan earthquakes began with an earthquake (M6.2) on the Hinagu Fault on April 14, 2016 followed by a second (M7.0) event on the Futagawa Fault, that on April 16. These shallow 10-11 deep km events are the strongest earthquakes recorded in Kyushu prefecture during the modern instrumental era. The United States' National Science Foundation (US NSF) supported Geotechnical Extreme Events Reconnaissance (GEER) Association conducted a reconnaissance of the region. These earthquakes resulted in substantial damage to infrastructure, buildings, cultural heritage of Kumamoto castle, roads and highways, slopes, and river embankments. Surface fault rupture produced offset to roads, buildings, river levees, and an agricultural dam. Surprisingly, given the extremely intense earthquake motions, liquefaction-induced damage was mostly limited to a few districts of Kumamoto City and in port areas, indicating that either the volcanic soils were largely unsusceptible to liquefaction or the presence of fines reduced the surficial manifestation of liquefaction and its effects. The important case histories identified by the study are [1] fault rupture through Oh-Kirihata Dam; [2] subsidence in Aso Caldera; [3] fault rupture through Shimojin-Cho River Canal; [4] surprising paucity of liquefaction and its effects; and [5] possible identification of a nearly non-displacement lateral spread.
UR - http://www.scopus.com/inward/record.url?scp=85050880764&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85050880764&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85050880764
SN - 1344-9656
VL - 19
SP - 267
EP - 274
JO - lowland technology international
JF - lowland technology international
IS - 4
ER -