Gelation and adhesion behavior of mussel adhesive protein mimetic polymer

Jin Nishida, Motoyasu Kobayashi, Atsushi Takahara

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


An acrylamide-type copolymer containing catechol, amino, and hydroxyl groups was synthesized as a mimetic of the natural mussel adhesive protein (MAP). The obtained copolymer in a phosphate buffer solution (pH = 8.0) formed a hydrogel within 2 h under air, whereas gelation did not proceed under argon atmosphere. We confirmed that the cross-linking reaction of the synthesized MAP mimetic copolymer was triggered by aerobic oxidation of catechol moieties to form an adhesive hydrogel. Two aluminum plates were adhered by the gelation of the MAP mimetic copolymer solution under humid air at room temperature. The interfacial region between the two aluminum plates failed at a lap shear strength of 0.46 MPa due to cohesive failure of the hydrogel. The adhesion strength was dominated by mechanical strength of the hydrogel as well as the interface interaction of catechol groups with substrate surface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013.

Original languageEnglish
Pages (from-to)1058-1065
Number of pages8
JournalJournal of Polymer Science, Part A: Polymer Chemistry
Issue number5
Publication statusPublished - Mar 1 2013

All Science Journal Classification (ASJC) codes

  • Polymers and Plastics
  • Organic Chemistry
  • Materials Chemistry


Dive into the research topics of 'Gelation and adhesion behavior of mussel adhesive protein mimetic polymer'. Together they form a unique fingerprint.

Cite this