Abstract
The performance of genetic algorithms (GAs) is studied under a babel-like fitness landscape, in which only a one bit sequence is significantly advantageous over the others. Under this landscape, the most dominant process to determine the GA performance is creation of the advantageous sequence, and crossover facilitates the creation, thereby improves the GA performance. We first conduct a computer simulation using the simple GA, and examine the waiting time until domination of the advantageous sequence (Td). It is shown that crossover with mildly high rate reduces Td significantly and that the magnitude of this reduction (Across) is the largest when the mutation rate is an intermediate value. Second, we mathematically analyze the model and estimate the value of Across. From these observations, we determine implementation criteria for GAs, which are useful when we apply GAs to engineering problems such as having a conspicuously discontinuous fitness landscape.
Original language | English |
---|---|
Pages (from-to) | 357-366 |
Number of pages | 10 |
Journal | Proceedings of the International Conference on Tools with Artificial Intelligence |
Publication status | Published - 1997 |
Event | Proceedings if the 1997 IEEE 9th IEEE International Conference on Tools with Artificial Intelligence - Newport Beach, CA, USA Duration: Nov 3 1997 → Nov 8 1997 |
All Science Journal Classification (ASJC) codes
- Software