From certain to uncertain: Toward optimal solution for offline multiple object tracking

Kaikai Zhao, Takashi Imaseki, Hiroshi Mouri, Einoshin Suzuki, Tetsu Matsukawa

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Affinity measure in object tracking outputs a similarity or distance score for given detections. As an affinity measure is typically imperfect, it generally has an uncertain region in which regarding two groups of detections as the same object or different objects based on the score can be wrong. How to reduce the uncertain region is a major challenge for most similarity-based tracking methods. Early mistakes often result in distribution drifts for tracked objects and this is another major issue for object tracking. In this paper, we propose a new offline tracking method called agglomerative hierarchical clustering with ensemble of tracking experts (AHC_ETE), to tackle the uncertain region and early mistake issues. We conduct tracking from certain to uncertain to reduce early mistakes. Meanwhile, we ensemble multiple tracking experts to reduce the uncertain region as the final uncertain region is the intersection of those of all tracking experts. Experiments on the MOT15 and MOT16 datasets demonstrated the effectiveness of our method. The code is publicly available at https://github.com/cyoukaikai/ahc_ete.

Original languageEnglish
Title of host publicationProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2506-2513
Number of pages8
ISBN (Electronic)9781728188089
DOIs
Publication statusPublished - 2020
Event25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
Duration: Jan 10 2021Jan 15 2021

Publication series

NameProceedings - International Conference on Pattern Recognition
ISSN (Print)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
Country/TerritoryItaly
CityVirtual, Milan
Period1/10/211/15/21

All Science Journal Classification (ASJC) codes

  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'From certain to uncertain: Toward optimal solution for offline multiple object tracking'. Together they form a unique fingerprint.

Cite this