Fretting fatigue properties under the effect of hydrogen and the mechanisms that cause the reduction in fretting fatigue strength

Jader Furtado, Ryosuke Komoda, Masanobu Kubota

    Research output: Contribution to conferencePaperpeer-review

    Abstract

    Fretting fatigue, which is a composite phenomenon of metal fatigue and friction, is one of the major factors in the design of mechanical components as it significantly reduces fatigue strength. Since hydrogen can influence both fatigue and friction, fretting fatigue is one of the important concerns in designing hydrogen equipment. The authors carried out the fretting fatigue tests on austenitic stainless steels in order to characterize the effect of hydrogen and to explain the mechanism responsible for hydrogen embrittlement. In this study, the significant reduction in fretting fatigue strength due to hydrogen is shown including other factors influencing the fretting fatigue strength such as surface roughness, hydrogen content and the addition of oxygen. The cause of the reduction in the fretting fatigue strength in hydrogen is local adhesion between the contacting surfaces and subsequent formation of many small cracks. Furthermore, hydrogen enhances crack initiation under fretting fatigue conditions. Transformation of the microstructure from austenite to martensite is another possible reason. A hydrogen charge also reduces the fretting fatigue strength. The cause is the reduction in the crack growth threshold, ΔKth, due to hydrogen.

    Original languageEnglish
    Pages1299-1308
    Number of pages10
    Publication statusPublished - 2013
    Event13th International Conference on Fracture 2013, ICF 2013 - Beijing, China
    Duration: Jun 16 2013Jun 21 2013

    Other

    Other13th International Conference on Fracture 2013, ICF 2013
    Country/TerritoryChina
    CityBeijing
    Period6/16/136/21/13

    All Science Journal Classification (ASJC) codes

    • Geotechnical Engineering and Engineering Geology

    Fingerprint

    Dive into the research topics of 'Fretting fatigue properties under the effect of hydrogen and the mechanisms that cause the reduction in fretting fatigue strength'. Together they form a unique fingerprint.

    Cite this