Abstract
This paper proposes a family of spread-spectrum schemes, several of which are new, for conducted-noise reduction in dcdc converters. The schemes use three randomized parameters to generate the switching signals: carrier frequency, duty ratio, and pulse position. The increasing performance and cost reduction of field-programmable gate array (FPGA) technology have made the application of these schemes possible in this field. A theoretical framework for a general representative scheme is provided. Then, the proposed schemes are designed and implemented using an FPGA-based controller. Furthermore, the effect of using the proposed controller on common-mode, differential-mode, and total conducted-noise characteristics of the dcdc converter is experimentally investigated. In addition, the three randomization parameters are swept to determine the values that best achieve the conducted-noise spectrum spread. All studied cases are designed, implemented, and experimentally investigated. Then, the conducted-noise spectra are compared. The experimental results show that the use of the proposed controller with the determined randomization values significantly improves the conducted-noise spectrum and effectively reduces the noise peaks at both high- and low-frequency ranges.
Original language | English |
---|---|
Article number | 5462956 |
Pages (from-to) | 429-435 |
Number of pages | 7 |
Journal | IEEE Transactions on Industrial Electronics |
Volume | 58 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2011 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Electrical and Electronic Engineering