Flower-Like Nickel-Cobalt Oxide Decorated Dopamine-Derived Carbon Nanocomposite for High Performance Supercapacitor Applications

Vediyappan Veeramani, Rajesh Madhu, Shen Ming Chen, Mani Sivakumar

Research output: Contribution to journalArticlepeer-review

82 Citations (Scopus)

Abstract

The highly open space flower, coin, peony flower, and leaf-like nickel-cobalt oxide nanostructured materials with and without dopamine as a carbon source (D1.5NiCo2O4, D1.0NiCo2O4 (D-NiCo2O4), D0.5NiCo2O4, and D0.0NiCo2O4 (D- free NiCo2O4)) are prepared by a low temperature chemical synthesis method with improved electrical conductivity, providing the longtime electron pathway, and high surface area for high performance supercapacitors. The structure and morphology of the as-synthesized samples were characterized by X-ray diffraction pattern, X-ray photoelectron spectroscopy, scanning electron microscope, field emission-transmission electron microscope, and N2 adsorption-desorption isotherms. Electrochemical properties of the electrodes were analyzed by cyclic voltammetry and galvanostatic charge-discharge methods. Notably, the as-synthesized flower-like D-NiCo2O4 nanocomposite exhibited a maximum specific capacitance of 667 F g-1, which is superior to D- free NiCo2O4 viz. 202 F g-1 at 5 A g-1 with excellent cyclic stability of about 95% and 86% at 10 A g-1 after 2000 charge-discharge cycles in 2.0 M KOH aqueous electrolyte solution for D-NiCo2O4, and D-free NiCo2O4, respectively. In addition, an asymmetric supercapacitor device is fabricated through D-NiCo2O4 as a positive electrode and biomass-derived AC as a negative electrode with the potential range of 0-1.5 V in PVA-KOH gel electrolyte solution. These results indicate that the as-prepared electrodes have high specific capacitance, excellent cycle stability, and good rate capability, which surpass several related metal oxide electrodes.

Original languageEnglish
Pages (from-to)5013-5020
Number of pages8
JournalACS Sustainable Chemistry and Engineering
Volume4
Issue number9
DOIs
Publication statusPublished - Sept 6 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Environmental Chemistry
  • Chemical Engineering(all)
  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'Flower-Like Nickel-Cobalt Oxide Decorated Dopamine-Derived Carbon Nanocomposite for High Performance Supercapacitor Applications'. Together they form a unique fingerprint.

Cite this