TY - GEN
T1 - Floor sensing system using laser range finder and mirror for localizing daily life commodities
AU - Nohara, Yasunobu
AU - Hasegawa, Tsutomu
AU - Murakami, Kouji
PY - 2010
Y1 - 2010
N2 - This paper proposes a new method of measuring position of daily commodities placed on a floor. Picking up an object on a floor will be a typical task for a robot working in our daily life environment. However, it is difficult for a robotic vision to find a small daily life object left on a large floor. The floor surface may have various texture and shadow, while other furniture may obstruct the vision. Various objects may also exist on the floor. Moreover, the surface of the object has various optical characteristics: color, metallic reflection, transparent, black etc. Our method uses a laser range finder (LRF) together with a mirror installed on the wall very close to floor. The LRF scans the laser beam horizontally just above the floor and measure the distance to the object. Some beams are reflected by the mirror and measure the distance of the object from virtually different origin. Even if the LRF fails two measurements, the method calculates the position of the object by utilizing information that the two measurements are unavailable. Thus, the method achieves two major advantages: 1) robust against occlusion and 2) applicable to variety of daily life commodities. In the experiment, success rate of observation of our method achieves 100% for any daily commodity, while that of the existing method for a cell-phone is 69.4%.
AB - This paper proposes a new method of measuring position of daily commodities placed on a floor. Picking up an object on a floor will be a typical task for a robot working in our daily life environment. However, it is difficult for a robotic vision to find a small daily life object left on a large floor. The floor surface may have various texture and shadow, while other furniture may obstruct the vision. Various objects may also exist on the floor. Moreover, the surface of the object has various optical characteristics: color, metallic reflection, transparent, black etc. Our method uses a laser range finder (LRF) together with a mirror installed on the wall very close to floor. The LRF scans the laser beam horizontally just above the floor and measure the distance to the object. Some beams are reflected by the mirror and measure the distance of the object from virtually different origin. Even if the LRF fails two measurements, the method calculates the position of the object by utilizing information that the two measurements are unavailable. Thus, the method achieves two major advantages: 1) robust against occlusion and 2) applicable to variety of daily life commodities. In the experiment, success rate of observation of our method achieves 100% for any daily commodity, while that of the existing method for a cell-phone is 69.4%.
UR - http://www.scopus.com/inward/record.url?scp=78651519773&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78651519773&partnerID=8YFLogxK
U2 - 10.1109/IROS.2010.5649372
DO - 10.1109/IROS.2010.5649372
M3 - Conference contribution
AN - SCOPUS:78651519773
SN - 9781424466757
T3 - IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings
SP - 1030
EP - 1035
BT - IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings
T2 - 23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010
Y2 - 18 October 2010 through 22 October 2010
ER -