Floatability of molybdenite and chalcopyrite in artificial seawater

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)


Seawater has been reported to depress the floatability of molybdenum in copper-molybdenum (Cu-Mo) flotation circuits under alkaline conditions (pH > 9.5). However, the seawater used in the process contains various minerals and flotation reagents, which make it difficult to investigate the depression mechanism. This paper presents a fundamental study into the effect of artificial seawater as a seawater model solution on the floatability of molybdenite and chalcopyrite, which are the main minerals in the Cu-Mo flotation process. Floatability tests in the absence of flotation reagents (i.e., frothers and collectors) reveal that artificial seawater adversely affects the floatability of molybdenite and chalcopyrite at pH > 9. This phenomenon can be attributed to the adsorption of hydrophilic Mg(OH)2 precipitates formed under alkaline conditions on the mineral surfaces, which increases the surface wettability of the mineral particles, as shown by contact angle measurements and atomic force microscopy (AFM) images. The effect of kerosene as a molybdenite collector has also been investigated to assess its potential in the selective flotation of molybdenite and chalcopyrite in artificial seawater.

Original languageEnglish
Pages (from-to)117-130
Number of pages14
JournalMinerals Engineering
Publication statusPublished - Jan 2018

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • General Chemistry
  • Geotechnical Engineering and Engineering Geology
  • Mechanical Engineering


Dive into the research topics of 'Floatability of molybdenite and chalcopyrite in artificial seawater'. Together they form a unique fingerprint.

Cite this