TY - GEN
T1 - Flexible depth of field photography
AU - Nagahara, Hajime
AU - Kuthirummal, Sujit
AU - Zhou, Changyin
AU - Nayar, Shree K.
N1 - Funding Information:
Parts of this work were supported by grants from the National Science Foundation (IIS-04-12759) and the Office of Naval Research (N00014-08-1-0329 and N00014-06-1-0032.)
PY - 2008
Y1 - 2008
N2 - The range of scene depths that appear focused in an image is known as the depth of field (DOF). Conventional cameras are limited by a fundamental trade-off between depth of field and signal-to-noise ratio (SNR). For a dark scene, the aperture of the lens must be opened up to maintain SNR, which causes the DOF to reduce. Also, today's cameras have DOFs that correspond to a single slab that is perpendicular to the optical axis. In this paper, we present an imaging system that enables one to control the DOF in new and powerful ways. Our approach is to vary the position and/or orientation of the image detector, during the integration time of a single photograph. Even when the detector motion is very small (tens of microns), a large range of scene depths (several meters) is captured both in and out of focus. Our prototype camera uses a micro-actuator to translate the detector along the optical axis during image integration. Using this device, we demonstrate three applications of flexible DOF. First, we describe extended DOF, where a large depth range is captured with a very wide aperture (low noise) but with nearly depth-independent defocus blur. Applying deconvolution to a captured image gives an image with extended DOF and yet high SNR. Next, we show the capture of images with discontinuous DOFs. For instance, near and far objects can be imaged with sharpness while objects in between are severely blurred. Finally, we show that our camera can capture images with tilted DOFs (Scheimpflug imaging) without tilting the image detector. We believe flexible DOF imaging can open a new creative dimension in photography and lead to new capabilities in scientific imaging, vision, and graphics.
AB - The range of scene depths that appear focused in an image is known as the depth of field (DOF). Conventional cameras are limited by a fundamental trade-off between depth of field and signal-to-noise ratio (SNR). For a dark scene, the aperture of the lens must be opened up to maintain SNR, which causes the DOF to reduce. Also, today's cameras have DOFs that correspond to a single slab that is perpendicular to the optical axis. In this paper, we present an imaging system that enables one to control the DOF in new and powerful ways. Our approach is to vary the position and/or orientation of the image detector, during the integration time of a single photograph. Even when the detector motion is very small (tens of microns), a large range of scene depths (several meters) is captured both in and out of focus. Our prototype camera uses a micro-actuator to translate the detector along the optical axis during image integration. Using this device, we demonstrate three applications of flexible DOF. First, we describe extended DOF, where a large depth range is captured with a very wide aperture (low noise) but with nearly depth-independent defocus blur. Applying deconvolution to a captured image gives an image with extended DOF and yet high SNR. Next, we show the capture of images with discontinuous DOFs. For instance, near and far objects can be imaged with sharpness while objects in between are severely blurred. Finally, we show that our camera can capture images with tilted DOFs (Scheimpflug imaging) without tilting the image detector. We believe flexible DOF imaging can open a new creative dimension in photography and lead to new capabilities in scientific imaging, vision, and graphics.
UR - http://www.scopus.com/inward/record.url?scp=57149125805&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=57149125805&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-88693-8_5
DO - 10.1007/978-3-540-88693-8_5
M3 - Conference contribution
AN - SCOPUS:57149125805
SN - 3540886923
SN - 9783540886921
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 60
EP - 73
BT - Computer Vision - ECCV 2008 - 10th European Conference on Computer Vision, Proceedings
PB - Springer Verlag
T2 - 10th European Conference on Computer Vision, ECCV 2008
Y2 - 12 October 2008 through 18 October 2008
ER -