First- and second-hand smoke dispersion analysis from e-cigarettes using a computer-simulated person with a respiratory tract model

Kazuki Kuga, Kazuhide Ito, Sung Jun Yoo, Wenhao Chen, Ping Wang, Jiawen Liao, Jeff Fowles, Dennis Shusterman, Kazukiyo Kumagai

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

The purpose of this study was to investigate, in the human respiratory tract, the flow patterns and adsorption flux (deposition flux) distributions of volatile organic compounds (VOCs) generated by the use of electronic cigarettes (e-cigarettes) through the application of a three-dimensional computational fluid dynamics (CFD) analysis. Two types of human respiratory tract models, which give detailed respiratory tract geometries were reproduced in this study using computed tomography data, for the CFD analysis of inhalation exposure. Complicated flow patterns, nonuniform distributions of VOC concentrations, and heterogeneous adsorption flux distributions were determined within the human respiratory tract models, and individual specificity was confirmed. The CFD simulation results of adsorption flux distributions on the epithelium tissue surfaces of airways denoted the probability distributions of inhalation exposure in respiratory tracts, and high adsorption flux sites representing ‘hot spots’ were delineated for tissue doses of VOCs generated from smoking e-cigarettes. Furthermore, dispersion and diffusion of VOCs in an indoor environment due to exhalation of the vapour phase of e-cigarette emissions were analysed by using a computer-simulated person with a numerical respiratory tract model through an integrated and contiguous analysis of inhalation and exhalation modes during e-cigarette smoking.

Original languageEnglish
Pages (from-to)898-916
Number of pages19
JournalIndoor and Built Environment
Volume27
Issue number7
DOIs
Publication statusPublished - Aug 1 2018

All Science Journal Classification (ASJC) codes

  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'First- and second-hand smoke dispersion analysis from e-cigarettes using a computer-simulated person with a respiratory tract model'. Together they form a unique fingerprint.

Cite this