TY - JOUR
T1 - Fast matrix inversion methods based on Chebyshev and Newton iterations for zero forcing precoding in massive MIMO systems
AU - Hashima, Sherief
AU - Muta, Osamu
N1 - Funding Information:
This research was supported in part by the JSPS KAKENHI (JP17K06427) and in part by the Egyptian Ministry of Higher Education (MoHE). Acknowledgements
Funding Information:
Our sincere thanks to MOHE and Center for Japan-Egypt Cooperation in Science and Technology, Kyushu University, Japan, for their guidance, support, and encouragement.
Publisher Copyright:
© 2020, The Author(s).
PY - 2020/12/1
Y1 - 2020/12/1
N2 - In massive MIMO (mMIMO) systems, large matrix inversion is a challenging problem due to the huge volume of users and antennas. Neumann series (NS) and successive over relaxation (SOR) are two typical methods that solve such a problem in linear precoding. NS expands the inverse of a matrix into a series of matrix vector multiplications, while SOR deals with the same problem as a system of linear equations and iteratively solves it. However, the required complexities for both methods are still high. In this paper, four new joint methods are presented to achieve faster convergence and lower complexity in matrix inversion to determine linear precoding weights for mMIMO systems, where both Chebyshev iteration (ChebI) and Newton iteration (NI) are investigated separately to speed up the convergence of NS and SOR. Firstly, joint Chebyshev and NS method (ChebI-NS) is proposed not only to accelerate the convergence in NS but also to achieve more accurate inversion. Secondly, new SOR-based approximate matrix inversion (SOR-AMI) is proposed to achieve a direct simplified matrix inversion with similar convergence characteristics to the conventional SOR. Finally, two improved SOR-AMI methods, NI-SOR-AMI and ChebI-SOR-AMI, are investigated for further convergence acceleration, where NI and ChebI approaches are combined with the SOR-AMI, respectively. These four proposed inversion methods provide near optimal bit error rate (BER) performance of zero forcing (ZF) case under uncorrelated and correlated mMIMO channel conditions. Simulation results verify that the proposed ChebI-NS has the highest convergence rate compared to the conventional NS with similar complexity. Similarly, ChebI-SOR-AMI and NI-SOR-AMI achieve faster convergence than the conventional SOR method. The order of the proposed methods according to the convergence speed are ChebI-SOR-AMI, NI-SOR-AMI, SOR-AMI, then ChebI-NS, respectively. ChebI-NS has a low convergence because NS has lower convergence than SOR. Although ChebI-SOR-AMI has the fastest convergence rate, NI-SOR-AMI is preferable than ChebI-SOR-AMI due to its lower complexity and close inversion result.
AB - In massive MIMO (mMIMO) systems, large matrix inversion is a challenging problem due to the huge volume of users and antennas. Neumann series (NS) and successive over relaxation (SOR) are two typical methods that solve such a problem in linear precoding. NS expands the inverse of a matrix into a series of matrix vector multiplications, while SOR deals with the same problem as a system of linear equations and iteratively solves it. However, the required complexities for both methods are still high. In this paper, four new joint methods are presented to achieve faster convergence and lower complexity in matrix inversion to determine linear precoding weights for mMIMO systems, where both Chebyshev iteration (ChebI) and Newton iteration (NI) are investigated separately to speed up the convergence of NS and SOR. Firstly, joint Chebyshev and NS method (ChebI-NS) is proposed not only to accelerate the convergence in NS but also to achieve more accurate inversion. Secondly, new SOR-based approximate matrix inversion (SOR-AMI) is proposed to achieve a direct simplified matrix inversion with similar convergence characteristics to the conventional SOR. Finally, two improved SOR-AMI methods, NI-SOR-AMI and ChebI-SOR-AMI, are investigated for further convergence acceleration, where NI and ChebI approaches are combined with the SOR-AMI, respectively. These four proposed inversion methods provide near optimal bit error rate (BER) performance of zero forcing (ZF) case under uncorrelated and correlated mMIMO channel conditions. Simulation results verify that the proposed ChebI-NS has the highest convergence rate compared to the conventional NS with similar complexity. Similarly, ChebI-SOR-AMI and NI-SOR-AMI achieve faster convergence than the conventional SOR method. The order of the proposed methods according to the convergence speed are ChebI-SOR-AMI, NI-SOR-AMI, SOR-AMI, then ChebI-NS, respectively. ChebI-NS has a low convergence because NS has lower convergence than SOR. Although ChebI-SOR-AMI has the fastest convergence rate, NI-SOR-AMI is preferable than ChebI-SOR-AMI due to its lower complexity and close inversion result.
UR - http://www.scopus.com/inward/record.url?scp=85078940866&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078940866&partnerID=8YFLogxK
U2 - 10.1186/s13638-019-1631-x
DO - 10.1186/s13638-019-1631-x
M3 - Article
AN - SCOPUS:85078940866
SN - 1687-1472
VL - 2020
JO - Eurasip Journal on Wireless Communications and Networking
JF - Eurasip Journal on Wireless Communications and Networking
IS - 1
M1 - 34
ER -