Fabrication of carbonate apatite honeycomb and its tissue response

Kunio Ishikawa, Melvin L. Munar, Kanji Tsuru, Youji Miyamoto

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)


Carbonate apatite (CO 3 Ap) block can be used as a bone substitute because it can be remodeled to new natural bone in a manner conforming with the bone remodeling process. Among the many porous structures available, honeycomb (HC) structure is advantageous for rapid replacement of CO 3 Ap to bone. In this study, the feasibility to fabricate a CO 3 Ap HC was studied, along with its initial tissue response in rabbit femur bone defect. First, a mixture of Ca(OH) 2 and a wax-based binder was extruded from a HC mold. Then the fabricated HC was heated for binder removal and carbonation at 450°C in a mixed O 2 –CO 2 atmosphere, forming a CaCO 3 HC. When the CaCO 3 HC was immersed in 1 mol/L Na 3 PO 4 solution at 80°C for 7 days, its composition changed from CaCO 3 to CO 3 Ap, maintaining the structure of the original CaCO 3 HC. Compressive strengths of the CaCO 3 and CO 3 Ap HCs were 65.2 ± 7.4 MPa and 88.7 ± 4.7 MPa, respectively. When the rabbit femur bone defect was reconstructed with the CO 3 Ap HC, new bone penetrated the CO 3 Ap HC completely. Osteoclasts and osteoblasts were found on the surface of the newly formed bone and osteocytes were also found in the newly formed bone, indicating ongoing bone remodeling. Furthermore, blood vessels were formed inside the pores of CO 3 Ap HC. Therefore, CO 3 Ap HC has good potential as an ideal bone substitute.

Original languageEnglish
Pages (from-to)1014-1020
Number of pages7
JournalJournal of Biomedical Materials Research - Part A
Issue number5
Publication statusPublished - May 2019

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys


Dive into the research topics of 'Fabrication of carbonate apatite honeycomb and its tissue response'. Together they form a unique fingerprint.

Cite this