Extraterrestrial hexamethylenetetramine in meteorites—a precursor of prebiotic chemistry in the inner solar system

Yasuhiro Oba, Yoshinori Takano, Hiroshi Naraoka, Yoshihiro Furukawa, Daniel P. Glavin, Jason P. Dworkin, Shogo Tachibana

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)


Despite extensive studies on the formation of organic molecules in various extraterrestrial environments, it still remains under debate when, where, and how such molecules were abiotically formed. A key molecule to solve the problem, hexamethylenetetramine (HMT) has not been confirmed in extraterrestrial materials despite extensive laboratory experimental evidence that it can be produced in interstellar or cometary environments. Here we report the first detection of HMT and functionalized HMT species in the carbonaceous chondrites Murchison, Murray, and Tagish Lake. While the part-per-billion level concentration of HMT in Murchison and Tagish Lake is comparable to other related soluble organic molecules like amino acids, these compounds may have eluded detection in previous studies due to the loss of HMT during the extraction processes. HMT, which can yield important molecules for prebiotic chemistry such as formaldehyde and ammonia upon degradation, is a likely precursor of meteoritic organic compounds of astrochemical and astrophysical interest.

Original languageEnglish
Article number6243
JournalNature communications
Issue number1
Publication statusPublished - Dec 2020

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy


Dive into the research topics of 'Extraterrestrial hexamethylenetetramine in meteorites—a precursor of prebiotic chemistry in the inner solar system'. Together they form a unique fingerprint.

Cite this