TY - JOUR
T1 - Exploring the thermal stability of α-chymotrypsin in protic ionic liquids
AU - Attri, Pankaj
AU - Venkatesu, Pannuru
N1 - Funding Information:
We gratefully acknowledge Council of Scientific Industrial Research (CSIR), New Delhi , through the grant no. 01(2343)/09/EMR-II , for financial support.
Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.
PY - 2013/3
Y1 - 2013/3
N2 - Ammonium based ionic liquids (ILs) are biocompatible co-solvents that stabilize the native state of proteins. Experimentally, we have explored the stability of α-chymotrypsin (CT) in the presence of nine ILs, i.e., diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), diethylammonium dihydrogen phosphate (DEAP), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), trimethylammonium acetate (TMAA), trimethylammonium hydrogen sulfate (TMAS), trimethylammonium dihydrogen phosphate (TMAP). Thermodynamic folding properties such as transition temperature (Tm), Gibbs free energy change of unfolding (ΔGU), enthalpy change (ΔH) and heat capacity change (ΔCp) of CT in ILs are obtained by fluorescence spectra analysis. Fluorescence and circular dichroism (CD) spectroscopy experiments were performed to probe CT stabilization and structural changes in the presence of ILs. Our experimental results suggest that the ILs act as stabilizers for the CT structure and the stability of CT depends on the structural arrangement of the ions of ILs. Our experimental results reveal that ILs (DEAA, DEAS and DEAP) having more hydrophobic ammonium cations [DEA +] are weak stabilizers for CT, while trimethyl ammonium cations [TMA+] ILs having small alkyl chain length such as TMAA, TMAS and TMAP are strong stabilizers and therefore more biocompatible for the native structure of CT.
AB - Ammonium based ionic liquids (ILs) are biocompatible co-solvents that stabilize the native state of proteins. Experimentally, we have explored the stability of α-chymotrypsin (CT) in the presence of nine ILs, i.e., diethylammonium acetate (DEAA), diethylammonium hydrogen sulfate (DEAS), diethylammonium dihydrogen phosphate (DEAP), triethylammonium acetate (TEAA), triethylammonium hydrogen sulfate (TEAS), triethylammonium dihydrogen phosphate (TEAP), trimethylammonium acetate (TMAA), trimethylammonium hydrogen sulfate (TMAS), trimethylammonium dihydrogen phosphate (TMAP). Thermodynamic folding properties such as transition temperature (Tm), Gibbs free energy change of unfolding (ΔGU), enthalpy change (ΔH) and heat capacity change (ΔCp) of CT in ILs are obtained by fluorescence spectra analysis. Fluorescence and circular dichroism (CD) spectroscopy experiments were performed to probe CT stabilization and structural changes in the presence of ILs. Our experimental results suggest that the ILs act as stabilizers for the CT structure and the stability of CT depends on the structural arrangement of the ions of ILs. Our experimental results reveal that ILs (DEAA, DEAS and DEAP) having more hydrophobic ammonium cations [DEA +] are weak stabilizers for CT, while trimethyl ammonium cations [TMA+] ILs having small alkyl chain length such as TMAA, TMAS and TMAP are strong stabilizers and therefore more biocompatible for the native structure of CT.
UR - http://www.scopus.com/inward/record.url?scp=84875879151&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84875879151&partnerID=8YFLogxK
U2 - 10.1016/j.procbio.2013.02.006
DO - 10.1016/j.procbio.2013.02.006
M3 - Article
AN - SCOPUS:84875879151
SN - 1359-5113
VL - 48
SP - 462
EP - 470
JO - Process Biochemistry
JF - Process Biochemistry
IS - 3
ER -