Experimental study of separation control over a wide range of reynolds numbers using dielectric barrier discharge plasma actuator on airfoil

Satoshi Sekimoto, Kozo Fujii, Masayuki Anyoji, Yuma Miyakawa, Shinichiro Ito, Satoshi Shimomura, Hiroyuki Nishida, Taku Nonomura, Takashi Matsuno

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

This study proposes separation control investigation using a Dielectric Barrier Discharge (DBD) plasma actuator on a NACA0015 airfoil over a wide range of Reynolds numbers. The airfoil was a two dimensional NACA0015 wing model with chord length of 200mm. Reynolds numbers based on the chord length were ranged from 252,000 to 1,008,000. A plasma actuator was installed at the leading edge and driven with AC voltage. Burst mode (duty cycle) actuations, in which nondimensional burst frequency F+ was ranged in 0.1-30, were applied. Time-averaged pressure measurements were conducted with angles of attack from 14deg to 22deg. The results show that initial flow fields without an actuation can be classified into three types; 1) leading edge separation, 2) trailing edge separation, and 3) hysteresis condition between 1) and 2), and the effect of burst actuation is different for each above initial condition.

Original languageEnglish
Title of host publicationSymposia
Subtitle of host publicationGas-Liquid Two-Phase Flows; Gas and Liquid-Solid Two-Phase Flows; Numerical Methods for Multiphase Flow; Turbulent Flows: Issues and Perspectives; Flow Applications in Aerospace; Fluid Power; Bio-Inspired Fluid Mechanics; Flow Manipulation and Active Control; Fundamental Issues and Perspectives in Fluid Mechanics; Transport Phenomena in Energy Conversion from Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791858066
DOIs
Publication statusPublished - 2017
EventASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017 - Waikoloa, United States
Duration: Jul 30 2017Aug 3 2017

Publication series

NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
Volume1C-2017
ISSN (Print)0888-8116

Other

OtherASME 2017 Fluids Engineering Division Summer Meeting, FEDSM 2017
Country/TerritoryUnited States
CityWaikoloa
Period7/30/178/3/17

All Science Journal Classification (ASJC) codes

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Experimental study of separation control over a wide range of reynolds numbers using dielectric barrier discharge plasma actuator on airfoil'. Together they form a unique fingerprint.

Cite this