TY - JOUR
T1 - Evaluations of the thermodynamic phases of clouds in a cloud-system-resolving model using calipso and a satellite simulator over the southern ocean
AU - Roh, Woosub
AU - Satoh, Masaki
AU - Hashino, Tempei
AU - Okamoto, Hajime
AU - Seiki, Tatsuya
N1 - Funding Information:
Wethank Dr. Hagihara for helpful discussions. KU data were obtained from the Japan Aerospace Exploration Agency (JAXA). This research was supported by the EarthCARE Program of the Earth Observation Research Center of JAXA. All the simulations were performed using the K computer at the RIKEN R-CCS (Proposal hp170234, hp180182, hp190152). This study was supported by Integrated Research Program for Advancing Climate Models (TOUGOU Grant JPMXD0717935457), Program for Risk Information on Climate Change (SOSEI), and the FLAGSHIP2020 within the priority study4 (Advancement of meteorological and global environmental predictions utilizing observational "big data"), which are promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. This work was also supported by JSPS KAKENHI Grant JP17H06139 and Grant 20H01967. The NIES CGER computer resource is also used for analysis.
Funding Information:
Acknowledgments. We thank Dr. Hagihara for helpful discussions. KU data were obtained from the Japan Aerospace Exploration Agency (JAXA). This research was supported by the EarthCARE Program of the Earth Observation Research Center of JAXA. All the simulations were performed using the K computer at the RIKEN R-CCS (Proposal hp170234, hp180182, hp190152). This study was supported by Integrated Research Program for Advancing Climate Models (TOUGOU Grant JPMXD0717935457), Program for Risk Information on Climate Change (SOSEI), and the FLAGSHIP2020 within the priority study4 (Advancement of meteorological and global environmental predictions utilizing observational ‘‘big data’’), which are promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. This work was also supported by JSPS KAKENHI Grant JP17H06139 and Grant 20H01967. The NIES CGER computer resource is also used for analysis.
Publisher Copyright:
© 2020 American Meteorological Society.
PY - 2020/11
Y1 - 2020/11
N2 - A new evaluation method for the thermodynamic phases of clouds in cloud-system-resolving models is presented using CALIPSO observations and a satellite simulator. This method determines the thermodynamic phases using the depolarization ratio and a cloud extinction proxy. For the evaluation, we introduced empirical parameterization of the depolarization ratio of ice and water clouds using temperatures of a reanalysis dataset and total attenuated backscatters of CALIPSO.We evaluated the mixed-phase clouds simulated in a cloud-system-resolving model over the Southern Ocean using single-moment and doublemoment bulk cloud microphysics schemes, referred to as NSW6 and NDW6, respectively. The NDW6 simulations reproduce supercooled water clouds near the boundary layer that are consistent with the observations. Conversely, the NSW6 simulations failed to reproduce such supercooled water clouds. Consistencies between the cloud classes diagnosed by the evaluation method and the simulated hydrometeor categories were examined. NDW6 shows diagnosed water and ice classes that are consistent with the simulated categories, whereas the ice category simulated with NSW6 is diagnosed as liquid water by the present method due to the large extinction from the ice cloud layers. Additional analyses indicated that ice clouds with a small effective radius and large ice water content in NSW6 lead to erroneous values for the fraction of the diagnosed liquid water. It is shown that the uncertainty in the cloud classification method depends on the details of the cloud microphysics schemes. It is important to understand the causes of inconsistencies in order to properly understand the cloud classification applied to model evaluations as well as retrievals.
AB - A new evaluation method for the thermodynamic phases of clouds in cloud-system-resolving models is presented using CALIPSO observations and a satellite simulator. This method determines the thermodynamic phases using the depolarization ratio and a cloud extinction proxy. For the evaluation, we introduced empirical parameterization of the depolarization ratio of ice and water clouds using temperatures of a reanalysis dataset and total attenuated backscatters of CALIPSO.We evaluated the mixed-phase clouds simulated in a cloud-system-resolving model over the Southern Ocean using single-moment and doublemoment bulk cloud microphysics schemes, referred to as NSW6 and NDW6, respectively. The NDW6 simulations reproduce supercooled water clouds near the boundary layer that are consistent with the observations. Conversely, the NSW6 simulations failed to reproduce such supercooled water clouds. Consistencies between the cloud classes diagnosed by the evaluation method and the simulated hydrometeor categories were examined. NDW6 shows diagnosed water and ice classes that are consistent with the simulated categories, whereas the ice category simulated with NSW6 is diagnosed as liquid water by the present method due to the large extinction from the ice cloud layers. Additional analyses indicated that ice clouds with a small effective radius and large ice water content in NSW6 lead to erroneous values for the fraction of the diagnosed liquid water. It is shown that the uncertainty in the cloud classification method depends on the details of the cloud microphysics schemes. It is important to understand the causes of inconsistencies in order to properly understand the cloud classification applied to model evaluations as well as retrievals.
UR - http://www.scopus.com/inward/record.url?scp=85094968073&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85094968073&partnerID=8YFLogxK
U2 - 10.1175/JAS-D-19-0273.1
DO - 10.1175/JAS-D-19-0273.1
M3 - Article
AN - SCOPUS:85094968073
SN - 0022-4928
VL - 77
SP - 3781
EP - 3801
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 11
ER -