TY - JOUR
T1 - Evaluating the reduced hydrophobic taste sensor response of dipeptides by theasinensin a by using NMR and quantum mechanical analyses
AU - Guo, Jian
AU - Hirasaki, Naoto
AU - Miyata, Yuji
AU - Tanaka, Kazunari
AU - Tanaka, Takashi
AU - Wu, Xiao
AU - Tahara, Yusuke
AU - Toko, Kiyoshi
AU - Matsui, Toshiro
N1 - Publisher Copyright:
© 2016 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/6
Y1 - 2016/6
N2 - The current study demonstrated that theasinensin A (TSA) had a potential to form the complex with hydrophobic Trp-containing dipeptides, and to reduce their membrane potential by artificial-lipid membrane taste sensor. At a 1:3 molar ratio of the 6 Trp-containing dipeptides together with TSA, we observed a significant chemical shift of the protons of the dipeptides (Ää) to a high magnetic field, when analyzed using 1H-nuclear-magnetic resonance (NMR) spectroscopy. The Ää values were correlated with the hydrophobicity (log P) of the dipeptides and significant correlations were obtained (P = 0.022, R2 = 0.77); e.g., Trp-Leu with the highest log P value of 1.623 among the tested dipeptides showed the highest Ää value of 0.105 ppm for the H7 proton of Trp-Leu, while less chemical shifts were observed in theasinensin B and epigallocatechin-3-O-gallate. Diffusion-ordered NMR spectroscopy revealed that the diffusion coefficient of 3 mM of Trp-Leu (7.6 ? 10-11 m2 /s) at a pulse field gradient in the range 0.05-0.3 T/m decreased in the presence of 3 mM TSA (6.6 ? 10-11 m2 /s), suggesting that Trp-Leu forms a complex with TSA. Quantum mechanical calculations and rotating frame nuclear Overhauser effect-NMR spectroscopy provided configuration information on the geometry of the complex that Trp-Leu formed with TSA (1:1 complex) with a ÄG energy of -8.7 kJ/mol. A sensor analysis using artificial-lipid membranes demonstrated that the changes in membrane potential of 1 mM Trp-Leu (21.8 ± 1.3 mV) and Leu-Trp (5.3 ± 0.9 mV) were significantly (P < 0.001) reduced by 1 mM TSA (Trp-Leu, 13.1 ± 2.4 mV; Leu-Trp, 3.5 ± 0.5 mV; TSA alone, 0.2 ± 0.01 mV), indicating the effective suppression of hydrophobicity of dipeptides by TSA-formed complex.
AB - The current study demonstrated that theasinensin A (TSA) had a potential to form the complex with hydrophobic Trp-containing dipeptides, and to reduce their membrane potential by artificial-lipid membrane taste sensor. At a 1:3 molar ratio of the 6 Trp-containing dipeptides together with TSA, we observed a significant chemical shift of the protons of the dipeptides (Ää) to a high magnetic field, when analyzed using 1H-nuclear-magnetic resonance (NMR) spectroscopy. The Ää values were correlated with the hydrophobicity (log P) of the dipeptides and significant correlations were obtained (P = 0.022, R2 = 0.77); e.g., Trp-Leu with the highest log P value of 1.623 among the tested dipeptides showed the highest Ää value of 0.105 ppm for the H7 proton of Trp-Leu, while less chemical shifts were observed in theasinensin B and epigallocatechin-3-O-gallate. Diffusion-ordered NMR spectroscopy revealed that the diffusion coefficient of 3 mM of Trp-Leu (7.6 ? 10-11 m2 /s) at a pulse field gradient in the range 0.05-0.3 T/m decreased in the presence of 3 mM TSA (6.6 ? 10-11 m2 /s), suggesting that Trp-Leu forms a complex with TSA. Quantum mechanical calculations and rotating frame nuclear Overhauser effect-NMR spectroscopy provided configuration information on the geometry of the complex that Trp-Leu formed with TSA (1:1 complex) with a ÄG energy of -8.7 kJ/mol. A sensor analysis using artificial-lipid membranes demonstrated that the changes in membrane potential of 1 mM Trp-Leu (21.8 ± 1.3 mV) and Leu-Trp (5.3 ± 0.9 mV) were significantly (P < 0.001) reduced by 1 mM TSA (Trp-Leu, 13.1 ± 2.4 mV; Leu-Trp, 3.5 ± 0.5 mV; TSA alone, 0.2 ± 0.01 mV), indicating the effective suppression of hydrophobicity of dipeptides by TSA-formed complex.
UR - http://www.scopus.com/inward/record.url?scp=84976334270&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84976334270&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0157315
DO - 10.1371/journal.pone.0157315
M3 - Article
C2 - 27309380
AN - SCOPUS:84976334270
SN - 1932-6203
VL - 11
JO - PloS one
JF - PloS one
IS - 6
M1 - e0157315
ER -