Estimation of Orbital Parameters of Broken-up Object Using In-situ Debris Measurement Satellite

Mahiro Tanahashi, Hongru Chen, Yasuhiro Yoshimura, Toshiya Hanada

Research output: Contribution to journalConference articlepeer-review

Abstract

Collisions and explosions of satellites generate a large amount of sub-millimeter-size debris, which can cause fatal damage to a spacecraft. However, such tiny debris cannot be tracked from the ground. Therefore, an in-situ debris measurement satellite, which can detect impacts with sub-millimeter-size debris, has been proposed. Based on this concept, previous studies proposed the method to estimate some orbital parameters of the broken-up object. In those studies, it is assumed that the measurement satellite detects impacts at the intersection of the orbital planes of the measurement satellite and the broken-up object. However, simulated measurement data includes fragments contrary to this assumption. Thus, this study introduces a new approach to estimating the orbital parameters of the broken-up object from simulated measurement data. In this study, the inclination, the right ascension of the ascending node, and the nodal precession rate are estimated from the history of geocentric declination using the iteratively reweighted nonlinear least square method.

Original languageEnglish
JournalProceedings of the International Astronautical Congress, IAC
Volume2022-September
Publication statusPublished - 2022
Event73rd International Astronautical Congress, IAC 2022 - Paris, France
Duration: Sept 18 2022Sept 22 2022

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Estimation of Orbital Parameters of Broken-up Object Using In-situ Debris Measurement Satellite'. Together they form a unique fingerprint.

Cite this