TY - JOUR
T1 - Estimation of Orbital Parameters of Broken-up Object Using In-situ Debris Measurement Satellite
AU - Tanahashi, Mahiro
AU - Chen, Hongru
AU - Yoshimura, Yasuhiro
AU - Hanada, Toshiya
N1 - Publisher Copyright:
Copyright © 2022 by the International Astronautical Federation (IAF). All rights reserved.
PY - 2022
Y1 - 2022
N2 - Collisions and explosions of satellites generate a large amount of sub-millimeter-size debris, which can cause fatal damage to a spacecraft. However, such tiny debris cannot be tracked from the ground. Therefore, an in-situ debris measurement satellite, which can detect impacts with sub-millimeter-size debris, has been proposed. Based on this concept, previous studies proposed the method to estimate some orbital parameters of the broken-up object. In those studies, it is assumed that the measurement satellite detects impacts at the intersection of the orbital planes of the measurement satellite and the broken-up object. However, simulated measurement data includes fragments contrary to this assumption. Thus, this study introduces a new approach to estimating the orbital parameters of the broken-up object from simulated measurement data. In this study, the inclination, the right ascension of the ascending node, and the nodal precession rate are estimated from the history of geocentric declination using the iteratively reweighted nonlinear least square method.
AB - Collisions and explosions of satellites generate a large amount of sub-millimeter-size debris, which can cause fatal damage to a spacecraft. However, such tiny debris cannot be tracked from the ground. Therefore, an in-situ debris measurement satellite, which can detect impacts with sub-millimeter-size debris, has been proposed. Based on this concept, previous studies proposed the method to estimate some orbital parameters of the broken-up object. In those studies, it is assumed that the measurement satellite detects impacts at the intersection of the orbital planes of the measurement satellite and the broken-up object. However, simulated measurement data includes fragments contrary to this assumption. Thus, this study introduces a new approach to estimating the orbital parameters of the broken-up object from simulated measurement data. In this study, the inclination, the right ascension of the ascending node, and the nodal precession rate are estimated from the history of geocentric declination using the iteratively reweighted nonlinear least square method.
UR - http://www.scopus.com/inward/record.url?scp=85167593329&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85167593329&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85167593329
SN - 0074-1795
VL - 2022-September
JO - Proceedings of the International Astronautical Congress, IAC
JF - Proceedings of the International Astronautical Congress, IAC
T2 - 73rd International Astronautical Congress, IAC 2022
Y2 - 18 September 2022 through 22 September 2022
ER -