Abstract
Anthropogenic land use has led to the loss and fragmentation of native habitats and disruption to ecosystem processes, resulting in a decline in landscape connectivity and biodiversity. Here, in order to find the potentials of improvements in ecological connectivity, we provide a spatial analysis to present differences in ecological connectivity based on land cover maps and urban habitat maps in Suwon city, Republic of Korea. We generated two permeability maps for use in a network analysis, one being land cover and the other urban habitat, including a 5-km buffer area from the city boundary. We then determined the current-flow betweenness centrality (CFBC) for each map. Our results indicate that forests are typically the most highly connected areas in both maps. However, in the land cover map results, nearly all high-priority areas were in the mountainous region (CFBC value: 0.0100 ± 0.0028), but the urban habitat indicated that grasslands and rivers within the city also significantly contribute to connectivity (CFBC value: 0.0071 ± 0.0022). The CFBC maps developed here could be used as a reference when introducing green infrastructure in cities. Before establishing ecological networks for urban areas, future work should integrate the land use and ecological data of different administrative districts with continuous ecological connection.
Original language | English |
---|---|
Article number | 9529 |
Pages (from-to) | 1-14 |
Number of pages | 14 |
Journal | Sustainability (Switzerland) |
Volume | 12 |
Issue number | 22 |
DOIs | |
Publication status | Published - Nov 2 2020 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Computer Science (miscellaneous)
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Hardware and Architecture
- Computer Networks and Communications
- Management, Monitoring, Policy and Law