TY - JOUR
T1 - Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in Saccharomyces cerevisiae
AU - Watanabe, Takashi
AU - Tani, Motohiro
AU - Ishibashi, Yohei
AU - Endo, Ikumi
AU - Okino, Nozomu
AU - Ito, Makoto
N1 - Publisher Copyright:
© 2015 The Author 2015. Published by Oxford University Press. All rights reserved.
PY - 2015/4/14
Y1 - 2015/4/14
N2 - Sterylglucosides (SGs) are composed of a glucose and sterol derivatives, and are distributed in fungi, plants and mammals. We recently identified EGCrP1 and EGCrP2 (endoglycoceramidase-related proteins 1 and 2) as a β-glucocerebrosidase and steryl-β-glucosidase, respectively, in Cryptococcus neoformans. We herein describe an EGCrP2 homologue (Egh1; ORF name, Yir007w) involved in SG catabolism in Saccharomyces cerevisiae. The purified recombinant Egh1 hydrolyzed various β-glucosides including ergosteryl β-glucoside (EG), cholesteryl β-glucoside, sitosteryl β-glucoside, para-nitrophenyl β-glucoside, 4-methylumberifellyl β-glucoside and glucosylceramide. The disruption of EGH1 in S. cerevisiae BY4741 (egh1Δ) resulted in the accumulation of EG and fragmentation of vacuoles. The expression of EGH1 in egh1Δ (revertant) reduced the accumulation of EG, and restored the morphology of vacuoles. The accumulation of EG was not detected in EGH1 and UGT51(ATG26) double-disrupted mutants (ugt51Δegh1Δ), indicating that EG was synthesized by Ugt51(Atg26) and degraded by Egh1 in vivo. These results clearly demonstrated that Egh1 is an ergosteryl-β-glucosidase that is functionally involved in the EG catabolic pathway and vacuole formation in S. cerevisiae.
AB - Sterylglucosides (SGs) are composed of a glucose and sterol derivatives, and are distributed in fungi, plants and mammals. We recently identified EGCrP1 and EGCrP2 (endoglycoceramidase-related proteins 1 and 2) as a β-glucocerebrosidase and steryl-β-glucosidase, respectively, in Cryptococcus neoformans. We herein describe an EGCrP2 homologue (Egh1; ORF name, Yir007w) involved in SG catabolism in Saccharomyces cerevisiae. The purified recombinant Egh1 hydrolyzed various β-glucosides including ergosteryl β-glucoside (EG), cholesteryl β-glucoside, sitosteryl β-glucoside, para-nitrophenyl β-glucoside, 4-methylumberifellyl β-glucoside and glucosylceramide. The disruption of EGH1 in S. cerevisiae BY4741 (egh1Δ) resulted in the accumulation of EG and fragmentation of vacuoles. The expression of EGH1 in egh1Δ (revertant) reduced the accumulation of EG, and restored the morphology of vacuoles. The accumulation of EG was not detected in EGH1 and UGT51(ATG26) double-disrupted mutants (ugt51Δegh1Δ), indicating that EG was synthesized by Ugt51(Atg26) and degraded by Egh1 in vivo. These results clearly demonstrated that Egh1 is an ergosteryl-β-glucosidase that is functionally involved in the EG catabolic pathway and vacuole formation in S. cerevisiae.
UR - http://www.scopus.com/inward/record.url?scp=84943617361&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943617361&partnerID=8YFLogxK
U2 - 10.1093/glycob/cwv045
DO - 10.1093/glycob/cwv045
M3 - Article
C2 - 26116408
AN - SCOPUS:84943617361
SN - 0959-6658
VL - 25
SP - 1079
EP - 1089
JO - Glycobiology
JF - Glycobiology
IS - 10
ER -