Abstract
Epitaxial chemical vapor deposition (CVD) growth of uniform single-layer graphene is demonstrated over Co film crystallized on c-plane sapphire. The single crystalline Co film is realized on the sapphire substrate by optimized high-temperature sputtering and successive H2 annealing. This crystalline Co film enables the formation of uniform single-layer graphene, while a polycrystalline Co film deposited on a SiO2/Si substrate gives a number of graphene flakes with various thicknesses. Moreover, an epitaxial relationship between the as-grown graphene and Co lattice is observed when synthesis occurs at 1000 °C; the direction of the hexagonal lattice of the single-layer graphene completely matches with that of the underneath Co/sapphire substrate. The orientation of graphene depends on the growth temperature and, at 900 °C, the graphene lattice is rotated at 22 ± 8° with respect to the Co lattice direction. Our work expands a possibility of synthesizing single-layer graphene over various metal catalysts. Moreover, our CVD growth gives a graphene film with predefined orientation, and thus can be applied to graphene engineering, such as cutting along a specific crystallographic direction, for future electronics applications.
Original language | English |
---|---|
Pages (from-to) | 7407-7414 |
Number of pages | 8 |
Journal | ACS nano |
Volume | 4 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 28 2010 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Engineering(all)
- Physics and Astronomy(all)