TY - JOUR
T1 - Epigallocatechin-3-gallate, a polyphenol component of green tea, suppresses both collagen production and collagenase activity in hepatic stellate cells.
AU - Nakamuta, Makoto
AU - Higashi, Nobuhiko
AU - Kohjima, Motoyuki
AU - Fukushima, Marie
AU - Ohta, Satoshi
AU - Kotoh, Kazuhiro
AU - Kobayashi, Naoya
AU - Enjoji, Munechika
PY - 2005/10
Y1 - 2005/10
N2 - Catechins such as epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG), and epigallocatechin (EGC) are polyphenol components of green tea. EGCG is the major component and has been reported to possess a wide range of biological properties including anti-fibrogenic activity. In hepatic fibrosis, activated hepatic stellate cells (HSCs) play a central role. In this study, we investigated the effect of catechins, including EGCG, on collagen production and collagenase activity in rat primary HSCs and activated human HSC-derived TWNT-4 cells. EGCG (50 microM) suppressed type I collagen production in rat HSCs more than ECG (50 microM) did; however, EGC (50 microM) did not show suppressive effects. EGCG also inhibited both collagen production and collagenase activity (active matrix metalloproteinase-1 [MMP-1]) in a dose-dependent manner, but did not affect the tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) production in TWNT-4 cells. Real-time PCR unexpectedly revealed that EGCG enhanced the transcription of type I collagen and TIMP-1, but did not affect the transcription of alpha-smooth muscle actin (alpha-SMA), and reduced the transcription MMP-1 in TWNT-4 cells. These findings demonstrated that EGCG inhibited collagen production regardless of enhanced collagen transcription and suppressed collagenase activity, and suggested that EGCG might have therapeutic potential for liver fibrosis.
AB - Catechins such as epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG), and epigallocatechin (EGC) are polyphenol components of green tea. EGCG is the major component and has been reported to possess a wide range of biological properties including anti-fibrogenic activity. In hepatic fibrosis, activated hepatic stellate cells (HSCs) play a central role. In this study, we investigated the effect of catechins, including EGCG, on collagen production and collagenase activity in rat primary HSCs and activated human HSC-derived TWNT-4 cells. EGCG (50 microM) suppressed type I collagen production in rat HSCs more than ECG (50 microM) did; however, EGC (50 microM) did not show suppressive effects. EGCG also inhibited both collagen production and collagenase activity (active matrix metalloproteinase-1 [MMP-1]) in a dose-dependent manner, but did not affect the tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) production in TWNT-4 cells. Real-time PCR unexpectedly revealed that EGCG enhanced the transcription of type I collagen and TIMP-1, but did not affect the transcription of alpha-smooth muscle actin (alpha-SMA), and reduced the transcription MMP-1 in TWNT-4 cells. These findings demonstrated that EGCG inhibited collagen production regardless of enhanced collagen transcription and suppressed collagenase activity, and suggested that EGCG might have therapeutic potential for liver fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=33644693111&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33644693111&partnerID=8YFLogxK
M3 - Article
C2 - 16142404
AN - SCOPUS:33644693111
SN - 1107-3756
VL - 16
SP - 677
EP - 681
JO - International journal of molecular medicine
JF - International journal of molecular medicine
IS - 4
ER -