Enzyme-like catalysis via ternary complex mechanism: Alkoxy-bridged dinuclear cobalt complex mediates chemoselective O-esterification over N-amidation

Yukiko Hayashi, Stefano Santoro, Yuki Azuma, Fahmi Himo, Takashi Ohshima, Kazushi Mashima

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

Hydroxy group-selective acylation in the presence of more nucleophilic amines was achieved using acetates of first-row late transition metals, such as Mn, Fe, Co, Cu, and Zn. Among them, cobalt(II) acetate was the best catalyst in terms of reactivity and selectivity. The combination of an octanuclear cobalt carboxylate cluster [Co4(OCOR)6O]2 (2a: R = CF3, 2b: R = CH3, 2c: R = tBu) with nitrogen-containing ligands, such as 2,2′-bipyridine, provided an efficient catalytic system for transesterification, in which an alkoxide-bridged dinuclear complex, Co2(OCOtBu)2(bpy) 22-OCH2-C6H4-4- CH3)2 (10), was successfully isolated as a key intermediate. Kinetic studies and density functional theory calculations revealed Michaelis-Menten behavior of the complex 10 through an ordered ternary complex mechanism similar to dinuclear metallo-enzymes, suggesting the formation of alkoxides followed by coordination of the ester.

Original languageEnglish
Pages (from-to)6192-6199
Number of pages8
JournalJournal of the American Chemical Society
Volume135
Issue number16
DOIs
Publication statusPublished - Apr 24 2013

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Enzyme-like catalysis via ternary complex mechanism: Alkoxy-bridged dinuclear cobalt complex mediates chemoselective O-esterification over N-amidation'. Together they form a unique fingerprint.

Cite this