Abstract
To sufficiently improve the electrical conductivity of composite bipolar plates is crucial for their application in fuel cells and redox flow batteries. Eliminating the resin-rich layer on the surface of composite bipolar plates turns to be an effective approach. In this work, graphite/resin composite bipolar plates with advanced performance and durability are obtained after surface treatment with cactus-like carbon nanofibers which grow from the catalyst cores and stretch out to form cactus-like structures. Morphology and structure of the carbon nanofibers, as well as the morphology, electrical conductivity, electrochemical properties and charge-discharge performance of the bipolar plates in a vanadium redox flow battery (VRFB) are investigated. Results show that surface treatment with graphitized cactus-like carbon nanofibers significantly enhance the conductivity of the composite plates which reaches as high as 198.7 S cm−1, and the area specific resistance can be reduced to 25.4 mΩ cm2. The VRFB single cell with the modified bipolar plate exhibits very high energy efficiency of 86.28%, at 100 mA cm−2, and shows excellent durability in charge-discharge cycling test. With the superior properties above, composite bipolar plates after surface treatment with cactus-like carbon nanofibers are promising candidates for VRFBs.
Original language | English |
---|---|
Article number | 228903 |
Journal | Journal of Power Sources |
Volume | 482 |
DOIs | |
Publication status | Published - Jan 15 2021 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering