TY - JOUR
T1 - Enhanced heat transfer performance of an automobile radiator with graphene based suspensions
AU - Selvam, C.
AU - Mohan Lal, D.
AU - Harish, Sivasankaran
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
PY - 2017
Y1 - 2017
N2 - We report the convective heat transfer coefficient and pressure drop of graphene nanoplatelets seeded in water-ethylene glycol mixture flowing through an automobile radiator. The volume concentrations of graphene nanoplatelets were varied from 0.1% to 0.5%. Thermophysical properties such as thermal conductivity, viscosity, density and specific heat capacity of nanofluids were measured experimentally. Mass flow rate of nanofluids were varied from 10 g/s to 100 g/s. Nanofluid inlet temperature was considered as 35 °C and 45 °C while the ambient air velocity was fixed as 3 m/s for the convective heat transfer experiments. The convective heat transfer coefficient of nanofluids increases with increasing loading of graphene nanoplatelets, nanofluid inlet temperature and mass flow rate. The enhancement of convective heat transfer coefficient for the highest concentration (0.5 vol%) and highest mass flow rate (100 g/s) was found to be 20% and 51% when the nanofluid inlet temperature was 35 °C and 45 °C respectively. The pressure drop of nanofluid increases with respect to graphene nanoplatelets loading and mass flow rate. As the loading of nanoplatelets increases from 0 to 0.5 vol% the pressure drop increases from 3.07 to 4.88 kPa at 35 °C while it increases from 3.02 to 4.04 kPa at 45 °C for 100 g/s. The present nanofluid has a potential to replace the conventional heat transfer fluids leading to compact thermal systems.
AB - We report the convective heat transfer coefficient and pressure drop of graphene nanoplatelets seeded in water-ethylene glycol mixture flowing through an automobile radiator. The volume concentrations of graphene nanoplatelets were varied from 0.1% to 0.5%. Thermophysical properties such as thermal conductivity, viscosity, density and specific heat capacity of nanofluids were measured experimentally. Mass flow rate of nanofluids were varied from 10 g/s to 100 g/s. Nanofluid inlet temperature was considered as 35 °C and 45 °C while the ambient air velocity was fixed as 3 m/s for the convective heat transfer experiments. The convective heat transfer coefficient of nanofluids increases with increasing loading of graphene nanoplatelets, nanofluid inlet temperature and mass flow rate. The enhancement of convective heat transfer coefficient for the highest concentration (0.5 vol%) and highest mass flow rate (100 g/s) was found to be 20% and 51% when the nanofluid inlet temperature was 35 °C and 45 °C respectively. The pressure drop of nanofluid increases with respect to graphene nanoplatelets loading and mass flow rate. As the loading of nanoplatelets increases from 0 to 0.5 vol% the pressure drop increases from 3.07 to 4.88 kPa at 35 °C while it increases from 3.02 to 4.04 kPa at 45 °C for 100 g/s. The present nanofluid has a potential to replace the conventional heat transfer fluids leading to compact thermal systems.
UR - http://www.scopus.com/inward/record.url?scp=85019843917&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85019843917&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2017.05.076
DO - 10.1016/j.applthermaleng.2017.05.076
M3 - Article
AN - SCOPUS:85019843917
SN - 1359-4311
VL - 123
SP - 50
EP - 60
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
ER -