Energy-Efficient Humidity Pump System for Poultry Houses

Muhammad Sultan, Muhammad Aleem, Takahiko Miyazaki

Research output: Chapter in Book/Report/Conference proceedingChapter

1 Citation (Scopus)

Abstract

The poultry industry is a major contributor to worldwide food production. Poultry birds are fatally sensitive to humidity and temperature. Therefore, a temperature/humidity control system is principally required for optimum growth of the birds. Conventionally, to regulate temperature/humidity in control sheds, vapor compression air-conditioning systems are used which are not only costly but also consume an enormous amount of primary energy. Alternatively, evaporative cooling pads are also used which increase humidity level inside control sheds results in various fungal diseases. In this regard, this study explores desiccant air-conditioning (DAC) options for climatic conditions of Multan (Pakistan). These systems are operated with thermal energy that could be available via low-grade waste heat and renewable energy options. Such systems would allow the development of poultry houses in off-grid remote areas which eventually support the green smart grid’s philosophy. Two DAC options are studied which are involved in standalone DAC and evaporative cooling (EC) assisted DAC concepts. Psychrometric and thermodynamic analysis with two types of desiccant materials is used in the study (i.e., silica-gel and hydrophilic polymeric-sorbent). The study determined body-weight-gain, feed-conversion-ratio, sensible/latent heat, and temperature-humidity-index of birds. As such, the performance of the proposed systems is investigated for cooling capacity and COP. According to results, the EC-assisted polymeric-sorbent system has resulted feasible in terms of maximum cooling capacity and COP. This system could achieve thermal comfort of birds at THI of less than 30 °C.

Original languageEnglish
Title of host publicationGreen Energy and Technology
PublisherSpringer Science and Business Media Deutschland GmbH
Pages431-457
Number of pages27
DOIs
Publication statusPublished - 2022

Publication series

NameGreen Energy and Technology
ISSN (Print)1865-3529
ISSN (Electronic)1865-3537

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Industrial and Manufacturing Engineering
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Energy-Efficient Humidity Pump System for Poultry Houses'. Together they form a unique fingerprint.

Cite this