TY - JOUR
T1 - Electrochemical synthesis of Au-MnO2 on electrophoretically prepared graphene nanocomposite for high performance supercapacitor and biosensor applications
AU - Veeramani, Vediyappan
AU - Dinesh, Bose
AU - Chen, Shen Ming
AU - Saraswathi, Ramiah
N1 - Publisher Copyright:
© 2016 The Royal Society of Chemistry.
PY - 2016
Y1 - 2016
N2 - Herein, we report a facile electrochemical synthesis of an Au-MnO2 nanocomposite highly dispersed on an electrophoretically prepared graphene surface for the first time. Fascinatingly, we obtained a nanowires-like morphology for the MnO2 by using a simple in situ electrochemical deposition method. The as-synthesized Au-MnO2-graphene nanocomposite is characterized by various analytical and spectroscopic techniques viz. SEM, EDX, TEM, XRD, Raman spectroscopy and XPS. The as-prepared nanocomposite is employed in an electrochemical supercapacitor and for the sensitive detection of epinephrine. The supercapacitor performance is evaluated in 0.5 M NaOH by both cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) methods. The MnO2:Au ratio during deposition plays a vital role to influence the capacitance properties. The highest specific capacitance of 575 F g-1 for 1:0.01 (MnO2:Au) at a current density of 2.5 A g-1 has been obtained. The effect of current density, MnO2:Au ratio, scan rate, mass loading and electrolyte concentration were also optimized and good cycle stability was demonstrated. The comparison of specific capacitance over MnO2-graphene and Au-MnO2-graphene nanocomposites suggests that the incorporation of Au nanoparticles on MnO2-graphene surfaces has a highly substantial effect for enhancement of capacitive behaviour. Furthermore, the epinephrine sensor performance of an Au-MnO2-graphene nanocomposite modified glassy carbon electrode is evaluated by CV and differential pulse voltammetry (DPV) techniques. Interestingly, the DPV sensor exhibited a very low detection limit of 24 nM and an excellent current sensitivity value of 35.6 μA μM-1 cm-2, surpassing several related modified electrodes and demonstrating several practical industrial applications.
AB - Herein, we report a facile electrochemical synthesis of an Au-MnO2 nanocomposite highly dispersed on an electrophoretically prepared graphene surface for the first time. Fascinatingly, we obtained a nanowires-like morphology for the MnO2 by using a simple in situ electrochemical deposition method. The as-synthesized Au-MnO2-graphene nanocomposite is characterized by various analytical and spectroscopic techniques viz. SEM, EDX, TEM, XRD, Raman spectroscopy and XPS. The as-prepared nanocomposite is employed in an electrochemical supercapacitor and for the sensitive detection of epinephrine. The supercapacitor performance is evaluated in 0.5 M NaOH by both cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) methods. The MnO2:Au ratio during deposition plays a vital role to influence the capacitance properties. The highest specific capacitance of 575 F g-1 for 1:0.01 (MnO2:Au) at a current density of 2.5 A g-1 has been obtained. The effect of current density, MnO2:Au ratio, scan rate, mass loading and electrolyte concentration were also optimized and good cycle stability was demonstrated. The comparison of specific capacitance over MnO2-graphene and Au-MnO2-graphene nanocomposites suggests that the incorporation of Au nanoparticles on MnO2-graphene surfaces has a highly substantial effect for enhancement of capacitive behaviour. Furthermore, the epinephrine sensor performance of an Au-MnO2-graphene nanocomposite modified glassy carbon electrode is evaluated by CV and differential pulse voltammetry (DPV) techniques. Interestingly, the DPV sensor exhibited a very low detection limit of 24 nM and an excellent current sensitivity value of 35.6 μA μM-1 cm-2, surpassing several related modified electrodes and demonstrating several practical industrial applications.
UR - http://www.scopus.com/inward/record.url?scp=84959423046&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84959423046&partnerID=8YFLogxK
U2 - 10.1039/c5ta10515c
DO - 10.1039/c5ta10515c
M3 - Article
AN - SCOPUS:84959423046
SN - 2050-7488
VL - 4
SP - 3304
EP - 3315
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 9
ER -