Electrochemical surface treatment of a β-titanium alloy to realize an antibacterial property and bioactivity

Yusuke Tsutsumi, Mitsuo Niinomi, Masaaki Nakai, Masaya Shimabukuro, Maki Ashida, Peng Chen, Hisashi Doi, Takao Hanawa

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


In this study, micro-arc oxidation (MAO) was performed on a β-type titanium alloy, namely, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ), to improve not only its antibacterial property but also bioactivity in body fluids. The surface oxide layer formed on TNTZ by MAO treatment in a mixture of calcium glycerophosphate, calcium acetate, and silver nitrate was characterized using surface analyses. The resulting porous oxide layer was mainly composed of titanium oxide, and it also contained calcium, phosphorus, and a small amount of silver, all of which were incorporated from the electrolyte during the treatment. The MAO-treated TNTZ showed a strong inhibition effect on anaerobic Gram-negative bacteria when the electrolyte contained more than 0.5 mM silver ions. The formation of calcium phosphate on the surface of the specimens after immersion in Hanks’ solution was evaluated to determine the bioactivity of TNTZ with sufficient antibacterial property. As a result, thick calcium phosphate layers formed on the TNTZ specimen that underwent MAO treatment, whereas no precipitate was observed on TNTZ without treatment. Thus, the MAO treatment of titanium-based alloys is confirmed to be effective in realizing both antibacterial and bioactive properties.

Original languageEnglish
Article number76
Issue number4
Publication statusPublished - Mar 28 2016
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Materials Science


Dive into the research topics of 'Electrochemical surface treatment of a β-titanium alloy to realize an antibacterial property and bioactivity'. Together they form a unique fingerprint.

Cite this