Electrical conduction and mass transport properties of SrZr 0.99Fe0.01O3-δ

Atsushi Unemoto, Atsushi Kaimai, Kazuhisa Sato, Naoto Kitamura, Keiji Yashiro, Hiroshige Matsumoto, Junichiro Mizusaki, Koji Amezawa, Tatsuya Kawada

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)


    The electrical conductivity of SrZr0.99Fe0.01O 3-δ was evaluated by a four-probe ac technique. The measurements were conducted in hydrogen and in oxygen containing atmospheres at 823 ≤T/K≤ 1273. It was found from the X-ray absorption spectroscopic measurements that Fe in the oxide is trivalent both in hydrogen and in oxygen. In order to determine the major carrier in the oxide, gas partial pressure dependences and isotope effect of hydrogen and deuteron on the electrical conductivity was investigated. In humidified hydrogen, it was found that proton conduction is predominant in the lower temperature region while oxide ion conduction starts to contribute to the total by increasing temperature of above 1173K. In oxygen containing gas, the protonic conduction is found to be predominant at lower temperatures while the contribution of the electron hole conduction is significant at higher temperatures. Hydrogen evolution property was evaluated using the SrZr0.99Fe0.01O 3-δ disc as a solid electrolyte. Hydrogen evolution rate obeyed the Faraday's law in humidified hydrogen at 1173K, suggesting that the transport number of ionic species is unity.

    Original languageEnglish
    Pages (from-to)868-873
    Number of pages6
    JournalSolid State Ionics
    Issue number19-20
    Publication statusPublished - Jul 16 2010

    All Science Journal Classification (ASJC) codes

    • General Chemistry
    • General Materials Science
    • Condensed Matter Physics


    Dive into the research topics of 'Electrical conduction and mass transport properties of SrZr 0.99Fe0.01O3-δ'. Together they form a unique fingerprint.

    Cite this