TY - JOUR
T1 - Efficient DNA Strand Displacement by a W-Shaped Nucleoside Analogue (WNA-βT) Containing an ortho-Methyl-Substituted Phenyl Ring
AU - Aoki, Eriko
AU - Taniguchi, Yosuke
AU - Wada, Yasumasa
AU - Sasaki, Shigeki
PY - 2012/5
Y1 - 2012/5
N2 - Molecules that can target duplex DNA with sequence selectivity have the potential to be useful tools in genomic research and also as therapeutic agents. Homopurine-homopyrimidine stretches in duplex DNA can be recognized by homopurine or homopyrimidine TFOs (triplex-forming oligonucleotides) through the formation of triplex DNA. We have previously developed bicyclic nucleoside analogues (WNAs) for the formation of stable triplexes in the formation of stable antiparallel triplexes containing a TA or a CG interrupting site. In this study, we investigated the effects on triplex DNA formation of ortho-, meta-, and para-methyl substituent groups on the aromatic ring of the WNA analogue. It was found that the homopurine TFO containing meta- and para-methyl-substituted WNA-βT (mMe-WNA-βT, pMe-WNA-βT) stabilized triplexes containing a TA interrupting site or a GC site, respectively. Interestingly, the ortho-methyl-substituted WNA-βT (oMe-WNA-βT) efficiently promoted DNA strand displacement to form the TFO/pyrimidine duplex. A detailed investigation showed that the duplex was in the antiparallel orientation and that its formation took place prior to triplex formation with the need for a magnesium cation. NOESY measurements indicated a significant difference in the rotation flexibilities of the phenyl rings of WNA-βTs: that is, the conformation of the ortho-methylated phenyl ring was stable in a temperature-independent manner. It was speculated that the initial formation of a ternary complex was followed by strand displacement and then the formation of the TFO/pyrimidine duplex together with the TFO2/pyrimidine triplex formation during the early stage, and that the equilibrium shifted to the triplex during the later stage. Although the detailed role is still uncertain, the fixed phenyl ring of oMe-WNA-βT might play a role in the displacement reaction.
AB - Molecules that can target duplex DNA with sequence selectivity have the potential to be useful tools in genomic research and also as therapeutic agents. Homopurine-homopyrimidine stretches in duplex DNA can be recognized by homopurine or homopyrimidine TFOs (triplex-forming oligonucleotides) through the formation of triplex DNA. We have previously developed bicyclic nucleoside analogues (WNAs) for the formation of stable triplexes in the formation of stable antiparallel triplexes containing a TA or a CG interrupting site. In this study, we investigated the effects on triplex DNA formation of ortho-, meta-, and para-methyl substituent groups on the aromatic ring of the WNA analogue. It was found that the homopurine TFO containing meta- and para-methyl-substituted WNA-βT (mMe-WNA-βT, pMe-WNA-βT) stabilized triplexes containing a TA interrupting site or a GC site, respectively. Interestingly, the ortho-methyl-substituted WNA-βT (oMe-WNA-βT) efficiently promoted DNA strand displacement to form the TFO/pyrimidine duplex. A detailed investigation showed that the duplex was in the antiparallel orientation and that its formation took place prior to triplex formation with the need for a magnesium cation. NOESY measurements indicated a significant difference in the rotation flexibilities of the phenyl rings of WNA-βTs: that is, the conformation of the ortho-methylated phenyl ring was stable in a temperature-independent manner. It was speculated that the initial formation of a ternary complex was followed by strand displacement and then the formation of the TFO/pyrimidine duplex together with the TFO2/pyrimidine triplex formation during the early stage, and that the equilibrium shifted to the triplex during the later stage. Although the detailed role is still uncertain, the fixed phenyl ring of oMe-WNA-βT might play a role in the displacement reaction.
UR - http://www.scopus.com/inward/record.url?scp=84861431496&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861431496&partnerID=8YFLogxK
U2 - 10.1002/cbic.201200066
DO - 10.1002/cbic.201200066
M3 - Article
C2 - 22549913
AN - SCOPUS:84861431496
SN - 1439-4227
VL - 13
SP - 1152
EP - 1160
JO - ChemBioChem
JF - ChemBioChem
IS - 8
ER -