Effects of three-dimensional strain on electric conductivity in au-dispersed Pr1.90Ni0.71Cu0.24Ga0.05O4+δ

Junji Hyodo, Ken Tominaga, Jong Eun Hong, Shintaro Ida, Tatsumi Ishihara

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)


The effects of tensile strain on the electronic properties of Cu- and Ga-doped Pr1.9NiO4 (PNCG) were investigated. The difference in the thermal expansion coefficient between PNCG (α = 13.5-13.9 × 10-6 K-1) and Au (α = 14.2 × 10-6 K-1) can induce tensile strain in PNCG, resulting in changes in electrical conductivity. Hall-effect measurements indicated that the tensile strain stabilized the oxidized state of PNCG, and the electrical conductivity increased because of the increased hole concentration. This suggests that the tensile strain affected the valence numbers of cations in PNCG, increasing the hole concentration and raising the conductivity. Furthermore, the BO6 octahedral distance in the K2NiF4 structure was increased by the induced strain, decreasing the hole mobility.

Original languageEnglish
Pages (from-to)5-13
Number of pages9
JournalJournal of Physical Chemistry C
Issue number1
Publication statusPublished - Jan 8 2015

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Energy(all)
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


Dive into the research topics of 'Effects of three-dimensional strain on electric conductivity in au-dispersed Pr1.90Ni0.71Cu0.24Ga0.05O4+δ'. Together they form a unique fingerprint.

Cite this