TY - JOUR
T1 - Effects of substitutional Mo and Cr on site occupation and diffusion of hydrogen in the β-phase vanadium hydride by first principles calculations
AU - Phung, Thi Viet Bac
AU - Ogawa, Hiroshi
AU - Dinh, Van An
AU - Nguyen, Oanh Hoang
AU - Shibutani, Yoji
AU - Asano, Kohta
AU - Nakamura, Yumiko
AU - Akiba, Etsuo
N1 - Funding Information:
Acknowledgements The authors are thankful to the project on the establishment of Master’s in Nanotechnology program of Vietnam Japan University for providing the facilities. This work was supported in part by a grant for research from Vietnam National University, Hanoi (VNU) under project number QG.15.09.
Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/1/1
Y1 - 2019/1/1
N2 - The effects of substitutional Mo and Cr in β-phase VH0.5 and V1−xMxH0.5625 (M = Mo, Cr; x = 0, 0.0625, 0.125) on the site occupation and diffusion paths of hydrogen are investigated by quantum mechanical calculations based on density functional theory. Fundamental processes of the interstitial-assisted mechanisms are systematically figured out, and specific values of the site energies are obtained with zero-point energy (ZPE) corrections. Hydrogen atoms are found to occupy the octahedral (O) interstitial sites in β-phase (V + M)H0.5 in the ground state. Upon increasing the hydrogen concentration H/(V + M) higher than 0.5, the additional H atom prefers to reside at the tetrahedral (T) interstitial sites. The minimum energy paths of hydrogen diffusion are analyzed by the Nudged Elastic Band method with ZPE corrections. The site occupation energy and activation energy for each hydrogen diffusion path are found to be strongly influenced by the substitution of Mo or Cr into vanadium hydride. The results presented in this work indicate that the additional H prefers to migrate directly from T site to the nearest neighboring T site without crossing O site. The energy barriers in the order of 0.253–0.276 eV of hydrogen migration in the V1−xMxH0.5625 hydrides obtained from ab initio simulations are in good agreement with the experimental data by means of 1H NMR measurement.
AB - The effects of substitutional Mo and Cr in β-phase VH0.5 and V1−xMxH0.5625 (M = Mo, Cr; x = 0, 0.0625, 0.125) on the site occupation and diffusion paths of hydrogen are investigated by quantum mechanical calculations based on density functional theory. Fundamental processes of the interstitial-assisted mechanisms are systematically figured out, and specific values of the site energies are obtained with zero-point energy (ZPE) corrections. Hydrogen atoms are found to occupy the octahedral (O) interstitial sites in β-phase (V + M)H0.5 in the ground state. Upon increasing the hydrogen concentration H/(V + M) higher than 0.5, the additional H atom prefers to reside at the tetrahedral (T) interstitial sites. The minimum energy paths of hydrogen diffusion are analyzed by the Nudged Elastic Band method with ZPE corrections. The site occupation energy and activation energy for each hydrogen diffusion path are found to be strongly influenced by the substitution of Mo or Cr into vanadium hydride. The results presented in this work indicate that the additional H prefers to migrate directly from T site to the nearest neighboring T site without crossing O site. The energy barriers in the order of 0.253–0.276 eV of hydrogen migration in the V1−xMxH0.5625 hydrides obtained from ab initio simulations are in good agreement with the experimental data by means of 1H NMR measurement.
UR - http://www.scopus.com/inward/record.url?scp=85059638959&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059638959&partnerID=8YFLogxK
U2 - 10.1007/s00214-018-2405-y
DO - 10.1007/s00214-018-2405-y
M3 - Article
AN - SCOPUS:85059638959
SN - 1432-881X
VL - 138
JO - Theoretical Chemistry Accounts
JF - Theoretical Chemistry Accounts
IS - 1
M1 - 16
ER -