TY - JOUR
T1 - Effects of stream surface inclination on tip leakage flow fields in compressor rotors
AU - Furukawa, Masato
AU - Saiki, Kazuhisa
AU - Nagayoshi, Kenya
AU - Kuroumaru, Motoo
AU - Inoue, Masahiro
PY - 1997
Y1 - 1997
N2 - Experimental and computational results of tip leakage flow fields in a diagonal flow rotor at the design flow rate are compared with those in an axial flow rotor. In the diagonal flow rotor, the casing and hub walls are inclined at 25 degrees and 45 degrees, respectively, to the axis of rotation, and the blade has airfoil sections with almost the same tip solidity as that of the axial flow rotor. It is found out that `breakdown' of the tip leakage vortex occurs at the aft part of the passage in the diagonal flow rotor. The `vortex breakdown' causes significant changes in the nature of the tip leakage vortex: disappearance of the vortex core, large expansion of the vortex, and appearance of low relative velocity region in the vortex. These changes result in the behavior of the tip leakage flow substantially different from that in the axial flow rotor: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing pressure trough at the aft part of the rotor passage, large spread of the low-energy fluid due to the leakage flow, much larger growth of the casing wall boundary layer, and considerable increase in the absolute tangential velocity in the casing wall boundary layer. The vortex breakdown influences the overall performance, also: large reduction of efficiency with the tip clearance, and low level of noise.
AB - Experimental and computational results of tip leakage flow fields in a diagonal flow rotor at the design flow rate are compared with those in an axial flow rotor. In the diagonal flow rotor, the casing and hub walls are inclined at 25 degrees and 45 degrees, respectively, to the axis of rotation, and the blade has airfoil sections with almost the same tip solidity as that of the axial flow rotor. It is found out that `breakdown' of the tip leakage vortex occurs at the aft part of the passage in the diagonal flow rotor. The `vortex breakdown' causes significant changes in the nature of the tip leakage vortex: disappearance of the vortex core, large expansion of the vortex, and appearance of low relative velocity region in the vortex. These changes result in the behavior of the tip leakage flow substantially different from that in the axial flow rotor: no rolling-up of the leakage vortex downstream of the rotor, disappearance of the casing pressure trough at the aft part of the rotor passage, large spread of the low-energy fluid due to the leakage flow, much larger growth of the casing wall boundary layer, and considerable increase in the absolute tangential velocity in the casing wall boundary layer. The vortex breakdown influences the overall performance, also: large reduction of efficiency with the tip clearance, and low level of noise.
UR - http://www.scopus.com/inward/record.url?scp=0031375003&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031375003&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:0031375003
SN - 0402-1215
JO - American Society of Mechanical Engineers (Paper)
JF - American Society of Mechanical Engineers (Paper)
T2 - Proceedings of the 1997 International Gas Turbine & Aeroengine Congress & Exposition
Y2 - 2 June 1997 through 5 June 1997
ER -