TY - GEN
T1 - Effects of inter-turbines spacing on aerodynamics for wind farms based on actuator line model
AU - Ai, Yong
AU - Wan, Decheng
AU - Hu, Changhong
N1 - Publisher Copyright:
Copyright © 2017 by the International Society of Offshore and Polar Engineers (ISOPE).
PY - 2017
Y1 - 2017
N2 - Among several wind farm layout design parameters, the inter-turbine spacing, which has a great influence on aerodynamic power output, wind speed deficit, lifetime, wake vortex structure, is one of the most critical factors. Therefore, the effects of inter-turbine spacing on aerodynamics for wind farms must be carefully studied. In this study, Considering the uniform inflow conditions, the effects of inter-turbine spacing changing from three to nine times of rotor diameter on aerodynamics for wind farms containing two NREL 5MW baseline wind turbines in tandem layout are analyzed using actuator line model and CFD method, and the RANS equation with k-ω SST turbulence model was solved in the simulations conducted in the OpenFOAM. From the study, it is concluded that the inter-turbine spacing has significant effects on the aerodynamic power and wake characteristics. The aerodynamic power output of the downstream wind turbine exits sharp fluctuation before power output of the downstream wind turbine is becoming steady. Furthermore, periodic oscillation whose period is about the one-third of rotor rotating period can be also concluded from the study. Moreover, there is strong wake interaction which will impact the aerodynamics for wind farms seriously.
AB - Among several wind farm layout design parameters, the inter-turbine spacing, which has a great influence on aerodynamic power output, wind speed deficit, lifetime, wake vortex structure, is one of the most critical factors. Therefore, the effects of inter-turbine spacing on aerodynamics for wind farms must be carefully studied. In this study, Considering the uniform inflow conditions, the effects of inter-turbine spacing changing from three to nine times of rotor diameter on aerodynamics for wind farms containing two NREL 5MW baseline wind turbines in tandem layout are analyzed using actuator line model and CFD method, and the RANS equation with k-ω SST turbulence model was solved in the simulations conducted in the OpenFOAM. From the study, it is concluded that the inter-turbine spacing has significant effects on the aerodynamic power and wake characteristics. The aerodynamic power output of the downstream wind turbine exits sharp fluctuation before power output of the downstream wind turbine is becoming steady. Furthermore, periodic oscillation whose period is about the one-third of rotor rotating period can be also concluded from the study. Moreover, there is strong wake interaction which will impact the aerodynamics for wind farms seriously.
UR - http://www.scopus.com/inward/record.url?scp=85038946354&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85038946354&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85038946354
T3 - Proceedings of the International Offshore and Polar Engineering Conference
SP - 386
EP - 394
BT - Proceedings of the 27th International Ocean and Polar Engineering Conference, ISOPE 2017
PB - Society of Petroleum Engineers
T2 - 27th International Ocean and Polar Engineering Conference, ISOPE 2017
Y2 - 25 June 2017 through 30 June 2017
ER -