Abstract
We have examined the structural effects of zinc-octaethylporphyrin [Zn(OEP)] films used as a donor on the external quantum efficiency (EQE) of organic heterojunction photovoltaic (OPV) cells [ITO/Zn(OEP)/C60/Al], and investigated what exactly causes the improvement of EQE. When the structure of the Zn(OEP) films changed from amorphous to crystalline, the maximum EQE increased from 36% to 42%, which is greater than that of around 35% for previously reported OPV cells using buffer materials (Peumans and Forrest 2001 Appl. Phys. Lett. 79 126). The crystallization of Zn(OEP) films is found to increase the number of inter-molecular charge-transfer (IMCT) excitons and to enlarge the mobility of carriers and IMCT excitons, thus significantly improving the EQE of the photoabsorption band under illumination due to the IMCT excitons.
Original language | English |
---|---|
Article number | 145103 |
Journal | Journal of Physics D: Applied Physics |
Volume | 44 |
Issue number | 14 |
DOIs | |
Publication status | Published - Apr 13 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films