Abstract
Abstract In the present paper, finite-element analysis of a cracked specimen was conducted using a unified model for the elastic-plastic deformation and hydrogen diffusion. We considered the effects of the hydrogen-reduced yielding strength and work-hardening coefficient and used a comparison parameter in the simulation of the hydrogen-localized plastic zone near a crack tip. We realized two important facts: (1) the normal component of the plastic strain in the direction of remote stress near the crack tip is significantly increased by the reduced work-hardening coefficient at the same stress-intensity factor; (2) the reduced work-hardening coefficient enhances the localization of the plastic zone when compared to the case using the normal component of the crack-tip plastic strain in the direction of remote stress, which probably determines the ductile-brittle transition of the fatigue-crack propagation mode under a hydrogen atmosphere. These results indicate that the reduction in work-hardening coefficient and the utilization of the crack-tip plastic strain as a parameter to organize the data play important roles in the prediction of the transition condition of hydrogen-accelerated fatigue-crack propagation.
Original language | English |
---|---|
Article number | 16071 |
Pages (from-to) | 9825-9837 |
Number of pages | 13 |
Journal | International Journal of Hydrogen Energy |
Volume | 40 |
Issue number | 31 |
DOIs | |
Publication status | Published - Aug 17 2015 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology