TY - JOUR
T1 - Effects of adding glucose, sorbic acid and pre-fermented juices on the fermentation quality of guineagrass (Panicum maximum Jacq.) silages
AU - Shao, Tao
AU - Ohba, N.
AU - Shimojo, M.
AU - Masuda, Y.
N1 - Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2004/6
Y1 - 2004/6
N2 - This study was conducted to evaluate the effects of adding glucose (G), sorbic acid (S), pre-fermented juice of epiphytic lactic acid bacteria (FJLB) and their combinations on the fermentation qualities and residual mono-and di-saccharides compositions of guineagrass silage. The additives used in this experiment were 1% glucose, 0.1% sorbic acid and FJLB at a theoretical application rate of 9.0x105 CFU g-1 on the fresh weight basis of guineagrass, respectively. There was a total of eight treatments in this experiment: (1) C (without additives), (2) FJLB, (3) S, (4) G, (5) FJLB+S, (6) FJLB+G, (7) S+G, (8) FJLB+S+G. After 30 days of storage, the silos were opened for chemical analyses. Based on the results, all additives were efficient in improving the fermentation quality of guineagrass silage. This was well indicated by significantly (p<0.05) lower pH and BA content and significantly (p<0.05) higher LA content in the treated silages except for the FJLB than in the C. However, there was only a slight increase in LA for the FJLB as compared with the C, which might be due to the low WSC content of the original guineagrass (34.4 g kg-1). When the FJLB+S and FJLB+G were added, there were significant (p<0.05) decreases in pH and significant (p<0.05) increases in LA as compared with the FJLB alone. This indicated that the G, S and FJLB were of synergestic effects on the silage fermentation quality. The G combination treatments including the G alone showed large improvements in the fermentation quality as compared with the treatments without the G. This suggested that adding fermentable substrates (G) to plant materials such as guineagrass, which contain low WSC, intermediate population of epiphytic LAB, CP and DM content, is more important and efficient for improving the fermentation quality of silages than adding a number of species of domestic LAB (FJLB) and aerobic bacteria inhibitor (S).
AB - This study was conducted to evaluate the effects of adding glucose (G), sorbic acid (S), pre-fermented juice of epiphytic lactic acid bacteria (FJLB) and their combinations on the fermentation qualities and residual mono-and di-saccharides compositions of guineagrass silage. The additives used in this experiment were 1% glucose, 0.1% sorbic acid and FJLB at a theoretical application rate of 9.0x105 CFU g-1 on the fresh weight basis of guineagrass, respectively. There was a total of eight treatments in this experiment: (1) C (without additives), (2) FJLB, (3) S, (4) G, (5) FJLB+S, (6) FJLB+G, (7) S+G, (8) FJLB+S+G. After 30 days of storage, the silos were opened for chemical analyses. Based on the results, all additives were efficient in improving the fermentation quality of guineagrass silage. This was well indicated by significantly (p<0.05) lower pH and BA content and significantly (p<0.05) higher LA content in the treated silages except for the FJLB than in the C. However, there was only a slight increase in LA for the FJLB as compared with the C, which might be due to the low WSC content of the original guineagrass (34.4 g kg-1). When the FJLB+S and FJLB+G were added, there were significant (p<0.05) decreases in pH and significant (p<0.05) increases in LA as compared with the FJLB alone. This indicated that the G, S and FJLB were of synergestic effects on the silage fermentation quality. The G combination treatments including the G alone showed large improvements in the fermentation quality as compared with the treatments without the G. This suggested that adding fermentable substrates (G) to plant materials such as guineagrass, which contain low WSC, intermediate population of epiphytic LAB, CP and DM content, is more important and efficient for improving the fermentation quality of silages than adding a number of species of domestic LAB (FJLB) and aerobic bacteria inhibitor (S).
UR - http://www.scopus.com/inward/record.url?scp=4344578791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=4344578791&partnerID=8YFLogxK
U2 - 10.5713/ajas.2004.808
DO - 10.5713/ajas.2004.808
M3 - Article
AN - SCOPUS:4344578791
SN - 1011-2367
VL - 17
SP - 808
EP - 813
JO - Asian-Australasian Journal of Animal Sciences
JF - Asian-Australasian Journal of Animal Sciences
IS - 6
ER -